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Abstract
Sepsis is a life-threatening disease that is associated with organ dysfunction. It occurs due to the body’s dysregulated

response to infection. It is difficult to identify sepsis in its early stages, this delay in identification has a dramatic effect on

mortality rate. Developing prognostic tools for sepsis prediction has been the focus of various studies over previous

decades. However, most of these studies relied on tracking a limited number of features, as such, these approaches may not

predict sepsis sufficiently accurately in many cases. Therefore, in this study, we concentrate on building a more accurate

and medically relevant predictive model for identifying sepsis. First, both NSGA-II (a multi-objective genetic algorithm

optimization approach) and artificial neural networks are used concurrently to extract the optimal feature subset from

patient data. In the next stage, a deep learning model is built based on the selected optimal feature set. The proposed model

has two layers. The first is a deep learning classification model used to predict sepsis. This is a stacking ensemble of neural

network models that predicts which patients will develop sepsis. For patients who were predicted to have sepsis, data from

their first six hours after admission to the ICU are retrieved, this data is then used for further model optimization.

Optimization based on this small, recent timeframe leads to an increase in the effectiveness of our classification model

compared to other models from previous works. In the second layer of our model, a multitask regression deep learning

model is used to identify the onset time of sepsis and the blood pressure at that time in patients that were predicted to have

sepsis by the first layer. Our study was performed using the medical information from the intensive care MIMIC III real-

world dataset. The proposed classification model achieved 0.913, 0.921, 0.832, 0.906 for accuracy, specificity, sensitivity,

and AUC, respectively. In addition, the multitask regression model obtained an RMSE of 10.26 and 9.22 for predicting the

onset time of sepsis and the blood pressure at that time, respectively. There are no other studies in the literature that can

accurately predict the status of sepsis in terms of its onset time and predict medically verifiable quantities like blood

pressure to build confidence in the onset time prediction. The proposed model is medically intuitive and achieves superior

performance when compared to all other current state-of-the-art approaches.
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1 Introduction

Sepsis is an immune-mediated response to organ dys-

function infections, the condition is life-threatening,

prevalent, and costly. The incidence of sepsis is increasing

by approximately 13% per year [1]. Sepsis is classified as

one of the leading causes of in-hospital mortality and leads

to increased risks of cognitive impairment and permanent

organ damage for surviving patients. Its diagnosis is a

challenge for physicians due to its multifactorial charac-

teristics. The first definition of sepsis was developed in

1991, and it works by defining a practical framework for

systemic inflammatory response syndrome (SIRS), which

classifies sepsis into three different levels: sepsis, severe

sepsis, and septic shock [2]. In 2001, this definition was

expanded by adding another list of vital signs to the SIRS

criteria to better detect sepsis [3]. In 2016, sepsis was

redefined (and is now known as sepsis 3) to facilitate better

sepsis detection processes [4]. However, the sepsis 3 defi-

nition has led to various potential problems in its diagnosis
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and detection procedures due to the downgrading of

detection causing a higher mortality rate. Therefore, in

consideration of the problems with the sepsis 3 definition,

in this work, we decided to follow the initial definition.

Sepsis 1 is identified based on the existence of two criteria

at the same time: SIRS and suspected infection.

Sepsis is considered the leading cause of hospital mor-

tality for ICU patients with a mortality rate of over 45%

[5], 6]. Moreover, sepsis carries a high associated risk of

cardiac arrest [7]. The major tent poles of sepsis treatment

are early diagnosis and the rapid initiation of treatment.

Several studies have demonstrated that early detection and

treatment contribute to reductions in the mortality rate and

in medical expenditure [8]. The authors in [9] found that

sepsis patients had a survival rate of up to 80% if treatment

is received within the first hour of diagnosis, each hour of

delay in treatment was found to increase the mortality rate

by 8%. Another study [10] has shown that the survival

probability among sepsis patients is highly dependent on

the timing of the antibiotic’s intervention. Most studies

concentrated on predicting sepsis have depended on a small

number of features to achieve this, such as in [11–13].

Regardless of the good results achieved in some studies,

depending on such small numbers of features is suboptimal

when discriminating sepsis cases from other diagnoses.

There are many reasons for this, including: (1) the defini-

tion of organ dysfunction in relation to sepsis can be

unclear as it may occur for reasons other than sepsis [14];

(2) requiring the presence of infection before allowing a

sepsis prediction makes it difficult to identify sepsis when

the infection is not certain, several studies have reported

that organ dysfunction that returns to clinical conditions is

commonly observed and this occurrence is considered

difficult to distinguish from simultaneous infections; (3)

the new definition of sepsis considers it to be a syndrome,

this means we should treat all diseases present with similar

diagnostic processes. This approach may not be suitable for

patients with specific conditions such as cancer or chronic

heart disease [15]. However, none of the previous literature

has focused on investigating the reasons sepsis develops in

the first place, which means their outputs are not accepted

clinically. Therefore, this study mainly focuses on both

predicting sepsis and clarifying the cause of sepsis to help

define suitable sepsis treatment in addition to ensuring

timely treatment in cases when sepsis is identified.

Alongside predicting sepsis, we also predict its onset time

and the patient’s blood pressure at this time.

Multitask learning (MTL) is a technique where several

associated tasks are optimized concurrently, to achieve this

the learning parameters are partially shared [16,17]. By

exchanging features between related tasks, MTL can

enhance model generalization by exploiting hidden infor-

mation among related tasks. Additionally, MTL creates

more stable models because linking multiple tasks works as

a regularization feature in the resulting model. MTL

approaches vary in terms of model structure, information

sharing level, and optimization technique used [18], as

shown in Fig. 1. This study has a two-stage approach to the

problem at hand. In the first stage, we predict the occur-

rence of sepsis in ICU patients. In the second stage, MTL is

used to simultaneously predict the onset time of the disease

and the patient’s blood pressure at that time. The predicted

blood pressure can be used as a further data point that is

straightforward to verify and gives clinical credibility to

the model’s prediction of sepsis onset time. This infor-

mation is helpful to physicians and increases their trust in

the model’s decisions.

An artificial neural network is a series of algorithms that

aims to identify underlying relationships within a set of

data through a set of processes the system is put through

while being trained [19]. Although a multilayer ANN could

theoretically approximate any nonlinear function, its

application always brings several challenges due to the

high dimensional data that is used with these models.

Therefore, a preprocessing step is typically needed prior to

data fitting [20]. Feature subset selection using evolution-

ary algorithms is considered a promising technique [21].

Several works have been developed techniques to achieve

this [22, 23]. In this paper, we use a popular multi-objec-

tive feature selection technique known as the non-domi-

nated sorting genetic technique II (NSGA II) [24]. This

methodology selects the smallest number of features that

can provide the best performance and has achieved supe-

rior performance to other approaches in the literature.

NSGA-II works based on the concept of non-dominated

sorting and crowding distance. It ranks the features

according to feature importance to get the optimal number

of the most important features. Its selection process is

carried out through two main tasks: first, we minimize the

number of features in use. Second, we calculate the clas-

sification error using a 1-NN classifier to evaluate classifier

performance and compute the classification error. These

steps are repeated until we reach the minimal set of fea-

tures that gives the smallest error. In addition to the chal-

lenges posed by preprocessing, training the ANN itself is

also considered a taxing challenge [25]. This is because the

training process cannot guarantee optimal ANN weights,

which leaves a decent chance of ending up with a high

variance model. This challenge can be overcome, and state-

of-the-art performance achieved by combining the outputs

of various diverse ANN models, this process is known as

ensemble learning [26]. Various studies have demonstrated

that a good ensemble is one where all the ensemble’s sub

models are both accurate and independent in terms of their

model errors [27, 28].
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The main objective of this study is to highlight the

importance of using all the various vital signs and lab test

results available to enhance our ability to predict sepsis,

anticipate its onset time, and predict patients’ future vital

signs through a multitasking, multilayer ensemble neural

network model. The proposed ensemble model is expected

to have better performance than all its individual members

because it is no longer necessary to tune each individual

neural network to ensure the optimal weights are found, in

contrast to when using a single ANN model. To achieve

these goals, first, we extracted each patient’s data collected

in the first six hours from their admission to the ICU that is

recorded in the MIMIC III dataset. Certain preprocessing

steps are applied to the extracted data, including strategies

for handling missing data, outlier removal, and data bal-

ancing. Various ensemble neural network models were

then trained on the features extracted from this data for the

first six hours of each patient’s admission to predict sepsis

occurrence in that patient. Using the proposed model has

given us various insights that can be summarized as fol-

lows. (1) The definition of sepsis 3 is impractical in terms

of real-world clinical practice. (2) Successful prediction of

sepsis is associated with various vital signs and laboratory

tests rather than medical scores. (3) Using the relevant vital

signs as inputs improves the prediction accuracy regardless

of the algorithm used. (4) Statistical features that are

derived from a patient’s time series data can be considered

more useful than those from baseline data. (5) The classi-

fication results endorse the idea that ML models’ dis-

criminative power can be utilized to redefine how we

classify and identify sepsis by relying on various clinical

markers. This is a different approach whose definition of

sepsis does not fully align with the classical definition of

Sepsis that is currently in use. (6) Our results demonstrate

that using the multitasking paradigm with a deep learning

ensemble architecture can contribute effectively to

improved model performance and act as a regularization

step. The proposed model makes the following

contributions:

• We propose a multilayer ensemble model that predicts

sepsis in ICU patients while at the same time providing

prediction of onset time and the blood pressure at that

time.

• The first layer of our system is a classification model

implemented as an ensemble of deep learning models;

the second layer is an ensemble of deep learning

regression models for multitask learning.

• To the best of our knowledge, there are no studies in the

literature that are able to predict sepsis by giving its

expected onset time while also offering medical proof

for these predictions by providing an addition verifiable

data point of the expected blood pressure at that time.

• We utilized NSGA-II, which is a well-known multi-

objective feature selection optimization technique

based on genetic algorithms to select the smallest

number of features that can achieve the best

performance.

• Medical experts guided our study in terms of directing

us to select the initial set of relevant features that are

medically trusted for the diagnosis of sepsis.

• Our model was implemented and tested using a large

population from the MIMIC III dataset.

• The proposed model is statistically compared to other

classical machine learning models from other studies in

Fig. 1 Multitask architecture models: (a) Soft training: where each

task has its own parameters and model, this is distance regularized to

encourage distances to be similar, (b) Alternate training: this model

allows sharing of information between tasks, (c) Joint training: this

model allows different parts of the model to share parts of their

structure in addition to data statistics
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the literature, our model achieved superior performance

to all those models.

The remainder of the paper is organized as follows.

Section 2 is the Related Work Section. Methods and

Materials are detailed in Sect. 3. Section 4 details the

proposed framework. Results and Discussions are given in

Sect. 5. Study limitations are discussed in Sect. 6, and the

paper is concluded in Sect. 7.

2 Related work

2.1 Medical scoring systems

In 1991, early efforts were developed to predict sepsis

based on the SIRS criteria [29]. Four factors were specified

as the SIRS criteria. Figure 2 details the SIRS criteria. To

be diagnosed with sepsis 1, patients must meet two or more

of the SIRS criteria. Hug et al. [30] stated that transient

hypotension that is detected from blood pressure wave-

forms could later lead to sepsis, which, in turn, leads to an

increased mortality rate. Wei et al. [31] stated that changes

in heart rate and blood pressure are associated with the

onset of decompensation and deterioration in critically ill

patients. Despite this, various studies have acknowledged

that the SIRS criteria are not accepted for defining sepsis

[32]. Kaukonen et al. [33] analyzed the SIRS criteria for

109,663 patients with organ dysfunction, they found that

22% were classified as SIRS negative (i.e., SIRS crite-

ria\ 2). Moreover, the SIRS criteria were often present in

patients who did not develop any infection [34, 35].

In 2001, a task force confirmed these drawbacks to

sepsis 1, but they did not expand the list of diagnostic

criteria or provide alternatives [9]. Therefore, sepsis 2 was

introduced to define which patients had sepsis using the

same criteria as sepsis 1. In 2016, as a part of the society of

critical care medicine (SCCM) and the European society of

intensive care medicine (ESICM) [36], a task force

compared the SIRS criteria with other assessment scores

(i.e., sequential organ failure assessment [SOFA]). Using

SOFA scores for sepsis prediction was found to be more

valid and superior to the SIRS criteria in terms of AUC

(0.74 vs. 0.64). Appendix 2, Table 12 details the calcula-

tion of SOFA scores. However, the complexity of calcu-

lating SOFA scores, along with the lack of the patient data

required to do this, has led to late identification of sepsis

when relying on SOFA. At the end of 2016 [37], quick

SOFA (qSOFA) was introduced to alleviate this limitation

of the SOFA score approach. qSOFA is considered an

enhanced version of SOFA; see Appendix 2 Table 13. [38]

2.2 Machine learning techniques for sepsis
prediction

Machine learning techniques have previously been used to

predict sepsis onset [39]. In previous decades, various

studies have tried to understand the relationship between

sepsis and patient data, including looking at the deterio-

ration of various vital signs and at lab test results [40], 41].

Some studies have shown that use of continuous heart rate

and blood pressure data can provide promising results in

terms of sepsis prediction. Shashikumar et al. [29] utilized

frequently recorded time X-series data, including blood

pressure (BP) and heart rate (HR). In [13], the authors used

the Insight ML model to predict sepsis based on a set of

clinical variables such as age, gender, vital signs, etc. That

study used data from 22,853 ICU stays and achieved an

AUC of 0.781 using fourfold cross-validation. For pre-

dicting pre-shock state, Liu et al. [42] and Kam et al. [20]

both used collections of features (e.g., arterial pressure,

heart rate, labs, risk scores including Glasgow Coma

Scores (GCS) and Sequential Organ Failure Assessment

(SOFA) scores, as well as respiratory rate) along with lab

test results leading to reported AUC scores of 0.93 and

0.929 using tenfold cross-validation, respectively. Kam

et al. [20] built an LSTM model, and Liu et al. [42] built an

RNN model for this task. Liu et al. [42] discovered that

serum lactate was the primary predictor for septic shock.

Some studies used hemodynamic measurements derived

from recorded waveform or discrete electronic health data.

Ghosh et al. [43] used three waveforms: mean arterial

pressure, heart rate, and respiratory rate to derive hemo-

dynamic predictor variables. That study used 1,310 sam-

ples. Liu et al. [42] and Kam et al. [20] used discrete

measurements. The model by Scherpf et al. [44] predicted

sepsis 3 h prior to its onset with an AUC of 0.81. To do this

they built an RNN model to predict sepsis using demo-

graphics, vital signs, and lab test result features, they

reported an AUC of 0.81 using fourfold stratified cross-

validation. Fagerström et al. [45] built an LSTM model

using demographics, vital signs, lab results, and GCS

Fig. 2 The Systemic Inflammatory Response Syndrome (SIRS)

criteria. Patients are classified as having sepsis if two or more SIRS

criteria exist with a suspicion of infection
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features to predict sepsis. The study was based on data

from 59,000 ICU patients. The model achieved an AUC of

0.8306 using sixfold cross-validation. Song et al. [46]

predicted sepsis within a 48-h windows based on demo-

graphics, vital sign data, blood gas estimations, blood cell

counts, and pH levels using logistic regression algorithm.

The study was based on 7870 patients, and the authors

achieved an AUC of 0.861 using tenfold cross validation.

Yao et al. [47] predicted sepsis using XGBoost and

achieved an AUC of 0.835 with fourfold cross validation.

That study was based on 3713 patients.

In [48], the authors validated the use of PCR analysis

and neural network genes to predict sepsis in 92 ICU

patients. That study achieved an AUC of 83.09%. In [49],

Lukaszewski et al. studied the use of lab test results and

biomedical signals to predict sepsis onset using a support

vector machine (SVM). Their model could predict sepsis

0–24 h prior to the onset time, the study was applied to

1,239 ICU patients. The results of this study are not reliable

because the data used were highly imbalanced. It only

contained data on 16 patients with sepsis (i.e., 2% of the

total dataset). The study achieved an AUC ranging from

0.30 to 095. In [50], the authors proposed two models, one

for detection and the other for prediction of sepsis. The

models predicted sepsis four hours before the onset of the

disease. They explored multilayer perceptron (MLP),

XGBoost, random forest (RF), and logistic regression

approaches. The study reported that RF achieved the best

performance with an AUC = 0.97 for sepsis detection and

an AUC = 0.90 for prediction. In [11], the authors pro-

posed a gradient tree boosting model for predicting sepsis

3 h prior to its onset based on an algorithm called Insight.

This algorithm was based on nine vital signs extracted from

patient’s data recorded during admission. This model had

been trained on 1,394 patients where 91.6% of patients had

sepsis and 8.4% did not. The study reported an AUC of

83.0%. In [51, 52], the authors used the Insight algorithm

to detect severe sepsis and got an AUC of 89.0%. In [12],

the authors checked the validity of the Insight machine

learning algorithm when predicting both sepsis and septic

shock using an aggregated data set from the University of

California. The authors carried out training and testing

using the MIMIC III dataset. They then applied transfer

learning to their classification model. The study concluded

that the Insight algorithm outperformed other scoring sys-

tems such as SOFA, QSOFA, and MEWS. The same idea

has been applied in [52]. Note that most previous studies

have used either the MIMIC II or MIMIC III datasets [53].

Other studies have utilized various deep learning

methods for sepsis prediction [54–56]. For example, Chen

et al. [57] developed an extensible model for sepsis, they

used 142 features extracted from patients’ vital signs,

demographic data, and laboratory tests. They reported a

utility score of 0.472 and an AUC of 0.83. In [20], the

authors used a long short-term model (LSTM) to make

predictions sepsis would occur in the future in certain

patients, this model achieved 92.2% in terms of AUC.

Other studies have tried to solve problems related to

complex decision boundaries using ensemble classifiers

that learn from the nonlinear boundary. For example, in

[58], the authors developed a model based on an ensemble

of five LSTM models, each of which was trained on a

different dataset before being combined to get a single

probability for each patient. Others built a model based on

an ensemble of five XGboost classifiers [59]. He et al. [8]

proposed an ensemble model based on a set of deep and

artificial features from the MIMIC III dataset. That study

used forty clinical variables (i.e., eight vital signs, 26 lab-

oratory values, and six demographics). For every individ-

ual, these features were measured and recorded once an

hour for six hours. These features were processed by three

simple LSTM models to extract deep features. These deep

features were combined with the original raw features plus

features related to SOFA and SIRS scores. The resulting

collection of features were used to train an XGBoost and

gradient boosting decision tree model to perform a binary

classification task (giving a result of either 0 or 1) for sepsis

mortality. The study achieved a sensitivity and specificity

of 0.641 ± 0.022 and 0.844 ± 0.007, respectively.

In [60], Chang et al. proposed an LSTM model to pre-

dict the onset time of sepsis. The main idea behind this

model was to use time encoding to solve the problem of

data being recorded at irregular time intervals, they

achieved an AUC of 0.892. Similar idea has been imple-

mented in [61, 62], but the main difference with these

papers was that they worked in two modes. The first mode

used demographic and vital signs, while the second mode

used vital signs, demographics, and laboratory test results.

Mode 1 and mode 2 achieved AUC scores of 0.89 and 0.92,

respectively. LSTM and a CNN have been used in [63] to

predict extreme sepsis and septic shock. The sample data

used for this study included 40,336 cases from the MIMIC

III dataset. That data included the onset time of sepsis, vital

signs, demographics, and laboratory tests for each case.

The classification models reported AUC scores of 0.89,

0.88, and 0.87 for predicting sepsis 4, 8, and 12 h before its

onset.

Kim et al. [64], developed a DL model known as SERA

that is based on clinical notes. NLP and feature selection

techniques were used for analyzing those clinical notes.

They reported values of 0.87, 0.87, and 0.94 for sensitivity,

specificity, and AUC, respectively. In [65], the authors

used SOFA scores to predict sepsis. They utilized a CNN

and RF model to predict SOFA scores based on data from

5,154 patients. They reported an AUC of 0.842 in terms of

sepsis classification MAE, an RMSE of 0.659, and 1.23 to
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predict the onset time. Yuan et al. [66] utilized XGBoost to

predict sepsis among adults. They collected data from

1,588 patients (444 with sepsis and 1444 without sepsis)

and reported an AUC of 0.89. In [67], they used the

XGBoost algorithm to predict sepsis among children.

In [68], Ngufor et al. used multitask learning to under-

stand both mortality rate and length of stay (LoS) among

patients in the intensive care unit (ICU). Other researchers

in [68] used a convolutional neural network model to

handle several natural language processing tasks (i.e.,

language modeling, named entity recognition). However,

none of these models dealt with problems related to data

with diverse sequential structures [69–71]. For more

information about the role of ML in sepsis management,

readers are guided to the following surveys [72–74].

Although previous sepsis studies have achieved qualified

successes in the early prediction of sepsis, more effort is

required to achieve even more accurate performance and

earlier predictions. Moreover, further efforts are needed to

evaluate the effectiveness of less commonly used ML

algorithms in sepsis prediction. Ultimately, owing to the

dynamic nature of physiological systems, more studies are

required to analyze the longitudinal time series data

required for accurate sepsis prediction. Other studies have

concentrated on building models for sepsis prediction

under special circumstances. For example, Xie et al. pre-

dicted sepsis among patients with kidney disease [75].

Other researchers in [67] built an ensemble model to pre-

dict sepsis among children.

3 Materials and methods

3.1 Data set

MIMIC III is an ICU database developed by MIT lab [53].

It comprises electronic health record (EHR) data for

patients admitted to various ICU units in a large tertiary

hospital in Boston. MIMIC III comprises of data from

53,423 patient admissions which were aggregated in the

period between 2001 and 2012. The MIMIC III tables in-

clude 4579 different measurements and 380 laboratory test

results per patient. Table 1 shows the distribution of

patients according to care unit type. Privacy issues were

tackled by removing all personal patient data like names,

phone numbers, etc. Various modalities were included in

MIMIC III, these were laboratory tests, physiological tests,

diagnosis details, as well as nursing notes and reports. The

data are distributed as a group of CSV tables mapped to a

PostgreSQL relational database. All tables are linked using

unique identifiers such as SUBJECT_ID, ADDMISSIO-

N_ID, etc.

3.2 Sepsis definition

In this paper, we follow the sepsis definition declared in

[11], which is known as the gold standard. The sepsis gold

standard is defined as suspected infection paired with two

or more SIRS criteria. To identify a patient as positive for

sepsis, we depend on ICD-9 code 995.51, which is stored in

the MIMIC III dataset. MIMIC III does not include the

time of the sepsis diagnosis. Therefore, we defined the

onset time as the hour in which two or more SIRS criteria

first occurred. The SIRS criteria are detailed in Fig. 2.

3.3 Comparators scores

To ensure the effectiveness of the proposed model, we

compared the best performance of each model with two

commonly used scoring systems: the sepsis-related organ

failure assessment (SOFA) [76] and the modified early

warning score (MEWS) [77]. To calculate SOFA, we used

patient measurements (including Glasgow coma score,

PaO2/FiO2, bur. bilirubin level, etc.), where each mea-

surement ranges from 1 to 4, and the overall score is cal-

culated as the sum of all scores. Table 12 in Appendix 2

details the calculation of the SOFA score. The MEWS

ranges from 0 to 14 and is scored by evaluating the

patient’s measurements, including heart rate, Glasgow

coma score, temperature, respiratory rate, etc. The details

of these subscores are presented in [77]. Table 14 in

Appendix 2 details the calculation process for MEWS.

3.4 Feature selection

Feature selection is an important preprocessing step in

classification task, its aim is to eliminate irrelevant,

redundant, and noisy features. There are many feature

selection techniques in the literature because there are

many situations where the available data has hundreds of

features leading to data with very high dimensions. To

select the best features in these situations, a feature selec-

tion method can be efficient for removing irrelevant and

redundant data, which should result in lower computation

Table 1 Distribution of patients according to care unit type

First care unit Admission type Survived Deceased

SICU Emergency 2117 202

SICU Urgent 65 15

MICU Emergency 6387 1657

MICU Urgent 104 34

CSRU Emergency 2115 624

CSRU Urgent 152 13
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time, improved classifier performance, and a better

understanding of the final learning model and data. There

are three main categories of feature selection techniques:

using a filter, a wrapper, or embedding [78]. Each category

has its own advantages and disadvantages. (1) Filter

methods are based on ranking features individually before

classification, a threshold is used and any features that are

below this threshold are considered irrelevant and

removed. The ranking methods are based on certain eval-

uation criteria, including correlation, dispersion ratio,

variance threshold, relief, fisher’s score, and mutual

information. These univariate feature selection methods are

fast, scalable, and independent of the classifier, but they

neglect any correlation between features or interactions

with the classifier. As such, these approaches can neglect

relevant features that are meaningless by themselves but in

combination these features may be able to improve model

performance. (2) Wrapper methods are based on classifiers

that act as black boxes where the classifier’s performance

informs the objective function to evaluate a subset of the

feature set. This approach allows us to consider correlation

among features so is not held back by dome of the limi-

tations of filter methods [79]. However, wrapper methods

are complex and more prone to overfitting when used with

small training datasets [80]. As evaluating 2 N subsets is an

NP-hard problem, optimal subsets can be found by using

search techniques to find that subset heuristically. For

example, the Branch and Bound method [81] uses a tree

structure to evaluate different feature subsets. Exhaustive

search methods are computationally intensive for datasets

with many features. Therefore, some bio-inspired opti-

mization techniques [82] such as genetic algorithms (GA),

ant colony optimization (ACO), or particle swarm opti-

mization (PSO) [83, 84] have been used to find local

optimum results, which are sufficient to produce good

results in a computationally feasible manner. Wrapper

methods are classified as sequential selection algorithms

(e.g., recursive feature elimination) or heuristic search

algorithms (e.g., GA, PSO, etc.). (3) The third approach,

hybrid embedded methods, incorporate feature selection as

part of the training process. Both wrapper and embedded

methods are classifier dependent. In [80], the authors

studied the benefits and limitations of these three feature

selection approaches. All previous methods are known

collectively as supervised methods. There are many other

feature selection techniques based on unsupervised, semi-

supervised, and ensemble techniques [85]. The details of

these techniques are provided in a published survey [80].

NSGA-II is a popular multi-objective optimization

technique that has been used in many studies for feature

selection [86–89], and in hyperparameter optimization

tasks [90] because it has been shown to achieve better

results than other state-of-the-art methods. NSGA-II can

optimize an objective function with two conflicting

objectives [91]. NSGA-II has shown great promise as one

of the most efficient multi-objective evolutionary opti-

mization approaches in the literature [92]. In detail, it has

low time complexity of OðNlogNÞ where N is the popu-

lation size and can avoid difficulties while setting sharing

parameters. NSGA-II also outperforms other algorithms for

multi-objective optimization due to its lower computational

complexity and its elitism property [93]. Salmanpour et al.

[94] compared NSGA-II with other well-known optimiza-

tion techniques (e.g., PSO, ACO, Simulated Annealing,

etc.), they reported the best results came from NSGA-II

which selected the smallest number of features while still

achieving the best performance. Türkşen et al. [95] com-

pared NSGA-II with other multi-objective optimization

techniques for feature selection, including archived multi-

objective simulated annealing (AMOSA) and direct multi-

search (DMS) methods, it was again found that NSGA-II

achieved the best results. Hojjati et al. [96] compared

NSGA-II and PSO while they optimized the operation of

two-reservoir systems with the goal of maximizing income

from hydropower sales while providing effective flood

control, they found that NSGA-II outperformed PSO.

Zhang et al. [88] used the idea of the Pareto domination

relationship and applied it using PSO, they managed to

achieve comparable performance to NSGA-II in this task.

Based on the previous discussion, we chose to apply

NSGA-II as our feature selection technique.

3.4.1 Multi-objective optimization for feature selection

The data used while building the classification model

includes a wide range of features that affect both classifi-

cation accuracy and learning time. Therefore, it is impor-

tant to select important features before building the

classification model. Feature subset selection is the process

of selecting a subset of features from the whole feature set

according to specific optimization criteria [24]. The multi-

objective genetic algorithm (MOGA) is considered one of

the most sophisticated engineering optimization techniques

for this purpose [97]. It includes various techniques such as

the micro genetic algorithm (Micro-GA), strength Pareto

evolutionary algorithm (SPEA), non-dominated sorting

genetic algorithm II (NSGA-II), etc. NSGA-II [22] is a

well-known optimization technique that has three main

characteristics: (1) using the elitist principle which assigns

the various probabilities of creating the next generation, (2)

using the crowding distance and fast crowded comparison

methods, and (3) emphasizes non-dominated sorting solu-

tions [23]. In this paper, we use NSGA-II for feature subset

selection due to its low time complexity [98]. NSGA-II has

been used in many studies in different fields and has often

achieved the best results [99, 100].
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The algorithm uses non-dominant sorting and crowding

distance to select the fronts of the population. Then cross-

over and polynomial operators are used to combine parents

and offspring to generate the next generation. The best

solution is selected based on diversity and non-dominant

sorting. Algorithm 1 outlines the NSGA-II main steps.

3.4.1.1 Dominant ranking For an objective function, let

M and N be two solutions. M could dominate N if it meets

the following criteria: (1) M is not worse than N for all

values of the objective function, and (2) M is superior to N

in at least one value of the objective function. Otherwise,

M and N are said not to dominate each other. Algorithm 2

details the steps for the dominance ranking.

3.4.1.2 Crowding distance The crowding distance is used

to calculate the density of each solution. Consider Z to be a

non-dominated solution with size S, and objective function

Fowhereo ¼ 1; 2; 3; . . .; k is the crowding distance. The

calculation of crowding distance is detailed in algorithm 3.

To compare between two solutions M and N both dominant

rank and crowding distance should be calculated.

3.5 Ensemble of artificial neural network

An artificial neural network (ANN) is a type of artificial

intelligence that attempts to approximate a given function

by tackling it in the manner of a biological nervous system.

An ANN is made up of several interconnected nodes called

neurons. A traditional feedfoward neural network at min-

imum contains an input layer, one hidden layer, and an

output layer. Each neuron in the hidden layer receives input

data adjusted by weights from the previous layer, in

addition there is a bias from each neuron, as follows

zi ¼
XNj�1

k¼1

xj�1
k wk;i � bk

 !
ð1Þ

where xj�1
k represents the input of the k-th node located in

the j-th layer, and wk;i represents the weight between the k

node in one layer and other nodes in the previous layers,

while bi represent the bias, Nj � 1 is the number of nodes

in layer j� 1. Figure 3 shows the general architecture of a

feedforward ANN. To produce its output, the summation is

passed along to the activation function that is calculated as

Yi ¼ Zið Þ. The most common activation function is the

sigmoid function that is calculated as in Eq. 2
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F Zið Þ ¼ 1

1 þ e�zi
ð2Þ

Although training deep neural networks may take time

and resources, there is no guarantee that the final model

will have a small generalization error [101]. On the other

hand, neural networks are very sensitive to initial condi-

tions (i.e., the initial weights and the existence of noise in

the training dataset), problems here may result in a low

bias, high variance model. One possible solution to these

problems is the combination of multiple models. This

approach belongs to a general class of techniques called

ensemble learning [26, 102]. Figure 4 shows the concept of

an ensemble of neural network models.

Multiple neural networks with the same configuration

but different initial weights are trained on the same feature

space. Each model makes its own prediction, and the final

decision is calculated by taking the average of the outputs

of all models. This solution helps to produce a low variance

model, but it may not contribute to reducing generalization

errors. This is because all models may have highly corre-

lated errors as they are trained using the same mapping

functions. Alternatively, the configuration of each neural

network may have a different architecture (i.e., different

learning rates, regularizations, numbers of nodes, numbers

of layers, etc.). The final output is calculated by combining

the predictions of all neural network models using various

combination techniques. They may be combined by

weighting the prediction of each model, this is known as

blending. Another approach is using a new model that

learns how to best combine the output from each ensemble

member, this is known as stacking.

3.6 Multitask learning

The purpose of MTL is to integrate the learning of several

related tasks to enhance the training process and improve

model performance. In [103], the authors provide a detailed

description of MTL. In [104], the authors provide a

comprehensive review of MTL in relation to deep learning.

MTL helps a model to differentiate between relevant and

irrelevant features and draws its attention only to the fea-

tures that affect the tasks at hand. MTL makes the model

produce a more suitable representation for all tasks, which

helps the model to generalize all its tasks. Finally, MTL

reduces the risk of overfitting by acting as a regularizer

through inductive bias.

In the clinical space, MTLs have been used in various

frameworks of prediction and regression models. In [105],

Chen et al. proposed a multitask CNN and RNN to predict

mortality. In [106], Harutyunyan et al. used MTL to predict

ICU mortality, LoS, phenotyping, etc. In [107], Wang et al.

compared the performance of single task and multitask

models to demonstrate the effectiveness of transferring

knowledge among related tasks. El-Sappagh et al. [16]

introduced a multitask deep learning model that was based

on BiLSTM and a CNN for multiclass classification of

Alzheimer’s disease.

4 Proposed framework

In this study, we develop a prediction model for patients at

risk from sepsis. This model is divided into two layers.

Figure 5 shows the general architecture of our framework.

The first layer is a classification model used to predict

patients who may develop sepsis based on the data

extracted from their data collected in the first 6 h after their

ICU admission. Single and ensemble deep learning models

were optimized and compared in terms of their detection

performance in this layer’s task. We explored different

models and architectures with various features sets using

different optimization techniques. The second layer is the

regression model, it is used to predict the onset time at

which a patient starts to develop sepsis and predicts their

blood pressure at that time. We chose to predict blood

pressure due to its importance for sepsis patients during the

treatment process. In the second layer, we initially utilized

different machine learning regression models for prediction

(including linear regression (LIR), lasso regression (lasso),

ridge regression (ridge), SGD regression (SGD), random

forest regressor (RF), gradient boosting regressor (GB),

and decision tree regressor (DT)). Then, we developed both

single task and multitask deep learning models for pre-

diction. Through this we demonstrated that using MTL for

simultaneously predictions of related task increases the

knowledge transfer between tasks and improves the overall

learning process. All models in the second layer were

evaluated using both MAE and RMSE.

Fig. 3 Simple neural network
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4.1 Data inclusion criteria

Data in MIMIC III is temporal, and most entries are part of

a time series. Some fields are updated over time periods of

hours and others are updated over minutes. Patients were

monitored from the time they were admitted to an ICU unit

(t = 0) until the time the patient was discharged. In

MIMIC-III, 38,597 distinct patients were aged over 15,

16,1273 patients were diagnosed with sepsis (ICD-9

code = 99,591), 3913 patients had severe sepsis (ICD-9

code = 99,592), and 2857 patients suffered septic shock

(ICD-9 code = 78,552). In our study, we concentrated on

predicting sepsis in all patients (male and female) who

were older than 15. Figure 6 details the selection criteria

for this study.

• We included adult patients (age[ 15) admitted to any

medical ICU unit.

• We included patients who were not diagnosed with

SIRS at the time of admission, or within the first 24 h

after that admission.

• We included patients that had at least 1 value in each

measurement category for sepsis patients as well as

patients that had at least 2 values in each measurement

category for healthy patients.

• We excluded a random set of records from the majority

class (i.e., healthy class) to make the data balanced.

To tackle the challenge of the sepsis onset time not

being mentioned in the data set, a label was created for

each hour of patient admission. This label indicates either 1

(Positive for sepsis onset) or 0 (Negative for sepsis onset).

Positive and negative labels are defined according to the

patient’s vital signs in each hour. A patient is considered

positive for sepsis if two or more SIRS criteria occur

simultaneously. The SIRS criteria are discussed in detail in

Sect. 3.2.

4.2 Data preprocessing

This step aims to improve the quality of the extracted data.

After exploring the extracted dataset, we found that it

contained many outliers and missing values. Missing val-

ues may occur for various reasons including sensor failure,

network transformation error, etc. Training a model using

incomplete and noisy data is recognized as one of the main

routes to poor performance in machine learning [108]. The

data preprocessing step includes tasks such as handling

irregular time intervals, data balancing, removing outliers,

and handling missing values.

4.2.1 Handling irregular time intervals

Most vital signs are measured at irregular time intervals.

Often machine learning techniques are not designed to

work with time-series data. Although some of them can be

adapted to use streaming data, they often require the data to

be sampled at regular time intervals. To solve this problem,

we divided each patient’s 24 h stay into 24 sequential

intervals each with a length of one hour where one value

for each data point is assigned to each interval, this is

achieved by averaging measured data over that hour period

for quantities that are sampled often. As a result, each

record contains 24 different values for each datapoint to

cover the 24-h period of the study. For the hours without

observations, the missing values are taken from the nearest

Fig. 4 Ensemble neural network
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Fig. 5 The proposed framework
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available observations. All these calculations were carried

out using python scripts.

4.2.2 Data balancing

A common issue with medical data is class imbalance

[109]. MIMIC III is an imbalanced data set where the

minority class is the patients with sepsis. Most ML tech-

niques do not work well with highly imbalanced datasets as

it causes the ML algorithm to become biased for one class

and classifies all data into the majority class. The three

popular techniques for handling imbalanced data are

downsampling, oversampling, and a combination of over-

sampling and downsampling [110]. Oversampling increa-

ses the number of records in the minority class.

Downsampling works by decreasing the number of records

in the majority class. Various algorithms can be used for

oversampling such as random oversampling [111], the

Synthetic Minority Oversampling Technique (SMOTE)

[112], the adaptive synthetic sampling approach, or

ADASYN [113]. Common downsampling techniques are

random under-sampling [113], clustering and the Tomek

links methods [114]. In this study, we use various data

inclusion criteria including age, the existence of at least 3

values for each measurement, and data balancing. After

excluding data according to the first two criteria, 35,445

patients were included. Using the downsampling technique

does not add any noise to the data but excludes some

records from the majority class. In the final analysis, we

noticed that downsampling contributed to improved results.

4.2.3 Removing outliers

Outliers are defined as values that lie too far from the

normal range. The opinions of medical experts are used to

characterize the normal range for each measurement. The

values that lie at an abnormal distance from the normal

range were eliminated and imputed using the expectation–

maximization algorithm [115].

4.2.4 Data imputation

The existence of missing values is a common problem in

medical data. This is because the values in the dataset may

have been recorded or sampled at varying time intervals

[116]. A simple way to handle missing values is to exclude

records that contain missing values. However, this results

in removing a significant portion of the data. Therefore,

various data mining practitioners and researchers have

done extensive work to address this problem by exploring

different approaches to handling missing values such as

expectation maximization [115], hot-deck imputation

[108], and multiple imputations by chained equation [117].

In the analysis of multivariate time series data from

MIMIC III, a large proportion of the laboratory test and

vital sign data are missing at different times during patient

admission. For example, time-series data such as temper-

ature and blood pressure (invasive and non-invasive)

comprise of between 45 and 60% of the lost data, but we

could not eliminate these datapoints due to their impor-

tance in the detection process. Considering this disparity,

we first choose sepsis cases that had at least 2 values for

each measurement and choose normal cases that had at

least 1 value for each measurement. The expectation–

maximization algorithm was used to impute missing values

in both sepsis and normal cases [115].

4.3 Feature selection

In this study, our feature selection process was conducted

in four main stages. First, we reviewed and analyzed the

features used in previous literature. Second, we consulted a

medical expert to recommend the most critical features for

sepsis prediction from a medical point of view. The first

two stages resulted in extracting the 36 most important

features (vital signs and laboratory measurements) that

may be used as inputs to our model. Third, we calculated a

statistical feature for each measurement per hour. Fourth,

these statistical features were optimized using certain fea-

ture optimization techniques we selected.

Fig. 6 Data inclusion and extraction criteria of the patients used in the

study

Neural Computing and Applications

123



4.3.1 Feature extraction

In this step, we depended on both previous studies and

medical expert opinion when choosing the most important

features that help predict sepsis among patients with the

most common diseases and identified the effect of sepsis in

each measurement [10, 29]. For example, for a diabetes

patient, sepsis increases the blood glucose level. On the

other hand, for non-diabetic patients, sepsis decreases the

glucose level to be less than average, this may cause the

glucose levels to reach those of hypoglycemia [118]. For

patients with hepatic diseases, sepsis increases SGOT,

Alkaline Phosphatase, burlibun enzyme, and Cerataine

while it decreases Albumin. For patients with renal dis-

eases, sepsis raises the renal failure probability which is

characterized by decreases in Pao4 and lactate levels. In

addition to this, sepsis causes increases in arterial base

excess which induces metabolic acidosis (blood PH\
7.35, HCO3\ 20) [119]. For patients with low blood

disease, sepsis can progress in a way that may lead to

disseminated intravascular coagulation (DIC) in addition to

dysfunction in platelet count and function according to

white blood cells (WBC). Urine is also critical in predict-

ing sepsis, patients with a risk of sepsis suffer from

decreased urine output\ 0.5 ml/kg per hour [118]. The

chosen features and their normal ranges are clarified in

Appendix 1, Table 11. We demonstrate the utilization of

several measurements for sepsis prediction. A total of 36

features were chosen for our model, this will not only

increase performance in prediction but also offer better

interpretability for clinicians at the level of the input

variables which may help in specifying the cause of any

dysfunction and help in the development of a therapy plan

[11, 44, 120]. For each patient admission, we only extract

data from the first six hours in ICU. The reason for

choosing only the first six hours is related to developing a

prediction model that can predict sepsis as early as possible

and will help avoid sepsis progression. Figures 7, 8 shows

the feature extracting process according to the time frame

that we used to handle the challenge related to having

various features (heart rate, respiratory rate, etc.) that have

several measurements recorded during the same hour.

Statistical functions (including minimum, maximum,

average, standard deviation, and variance) were calculated

for each feature in each hour. This step ended giving a total

of 1080 features (36 feature*5 statistical func-

tions*6 h = 1080 features).

4.3.2 Feature optimization

In this step, feature optimization is conducted to choose the

optimal feature subset from the whole feature set (that

includes 1080 features). Two competing objective func-

tions were used to choose the optimal feature subset. First,

we utilized NSGA-II to choose the minimal number of

features from the extracted dataset. The list of NSGA-II

parameters can be found in ‘‘Appendix 3’’ Table 15.

The principle of NSGA-II is to use non-dominant sort-

ing and the crowding distance to choose different feature

subsets. NSGA-II was discussed in detail in Sect. 4.1.

Second, the classification error, we used the 1-Neural

Network (1-NN) as the classification model to evaluate the

performance of each feature subset identified in the first

step. The 1-NN was built based on training data and

denotes classification errors based on testing data with a

fitness value for each feature subset specified using the NN.

Then, the feature subset that gave the lowest error rate was

chosen as the optimal feature subset. Figure 6 details the

steps for choosing the best feature subset. Next, we applied

NSGA-II to this feature set to extract the optimal feature.

We end up with 660 features after applying this feature

selection technique.

5 Results

5.1 Experimental setup

All experiments in this paper were implemented with an

intel core i7 laptop workstation with 16 GB Ram and a 1

Terabyte hard disk under a Windows 10 64-bit system. We

used Python 3.7 distributed with Anaconda 5.0.0. All

Fig. 7 Time frame extraction, only the first six hours are used as an

input to both the classification and the regression layer, the rest of the

data from the patient’s stay was used to confirm the prediction time.

Note that we leave 2 h as a time gap between the training and testing

window to maintain a reliable and confidential model
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models were implemented using the Keras library that is

based on the TensorFlow backend. The SoftMax activation

function with binary cross entropy was used in the classi-

fication layer, while the linear activation function was used

for regression tasks.

To evaluate the effectiveness of the proposed model, we

implemented and tested various DL models using a simple

neural network, an ensemble stacked neural network with

two different meta-classifiers (NN and logistic regression

(LR)), and an integration of single and ensemble models

with NSGA-II for feature subset selection. We found that

the stacked ensemble model outperformed all other models,

and accordingly used this in our classification tasks. Then,

we utilized single task and multitask DL models to predict

the values for both sepsis onset time and the patient’s blood

pressure at that time, our results demonstrate the ability of

the multitask model to enhance overall performance when

compared with single task DL models.

5.2 Evaluation metrics

For classification task, we used three metrics include

classification accuracy, sensitivity, specificity, and AUC.

The cross-validation (CV) results are calculated based on

the training data, and the generalization performance is

measured based on the testing data. Tables 2, 3 details the

used evaluation metrics.

5.3 Results for the classification layer

A goal of this layer is to identify who may obtained sepsis

at any time in their first day in the ICU admission after the

first six hours. Several experiments are conducted using

single and stacked ensemble of DL models. These models

are explored with and without feature optimization step.

All classification models are tuned using the Bayesian

optimization [121] and grid search [122] techniques.

5.3.1 Model training

We propose an advanced DL model for detecting Sepsis,

and it utilizes the patient’s time-series data to predict sepsis

based on multiple features. First, for the classification task,

we fed the patient’s features (Sepsis, no sepsis) into a

pipeline of DNN and dense block. This block has the fol-

lowing layers: (1) input layer with a dimension of 263, (2)

A rectified linear unit (ReLU) activation function (3) Four

separate dense layers with a different number of neurons,

(4) L2 regularization equal to 0.01 (5) dropout layer with

percentage 0.1 (6) the final layer for the classification

problem uses the SoftMax activation function with binary

cross-entropy. All classification models were trained using

Adam for multi-objective loss function with learning with

100 epoch and batch size of 30. Furthermore, to avoid

overfitting, we used L2 regularization with parameter 0.01.

Fig. 8 Hybrid NSGA-II and neural network
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We split our dataset into stratified 70% for training, 15%

for validation and 15% for testing. To avoid bias, we used

the stratified tenfold cross-validation technique. Note that

all experiment repeated using the following factors (single

and ensemble classifier, with and without choosing the

optimal feature set (NSGA II). The classifier hyperparam-

eters optimized using both grid search optimization (GSO),

Bayesian optimization (BO) techniques, and tenfold cross-

validation by varying batch size and learning rate.

5.3.2 Single classifier

In this section, we utilize a single DL model for predicting

sepsis after the first six hours of the patient’s admission,

and it is considered a binary classification task. We conduct

six different experiments to check the performance with

various conditions (with and without feature optimization,

with and without classifier optimization). Firstly, the model

was build based on all patient’s features (1080 features). It

results the lowest performance (ACC = 0.677, AUC =

0.730). The performance was slightly improved when

optimized the classifier hyperparameter (i.e., classifier

learning rate (CLR), number of epochs, dropout percent-

age) sing BO and GSO (ACC = 0.756, AUC = 0.740). The

optimized hyperparameters can be found in ‘‘Appendix 3’’.

Using the optimized feature set (660 features) increase the

performance by about (6–12) %. The best performance was

obtained when the classifier was tuned using BO (ACC =

0.802, AUC = 0.801). To enhance the performance, in the

sext section, we utilize the stacking ensemble deep learning

model.

5.3.3 Proposed ensemble classifier

In the stacking ensemble algorithm, n subsets of the

training set were created using the stratified with replace-

ment technique, where relative proportion from each class

is maintained in each subset. We test two meta-classifiers

include LR and NN. The optimized hyperparameters can be

found in ‘‘Appendix 3’’. The use of ensemble deep learning

models in the prediction of sepsis was validated based on

the data of the first six hours after the patient’s admission.

First, we start with building a classification model that

utilizes the whole feature set (1080 feature) in building the

ensemble DL model, and we obtain ACC = 0.727 and

AUC = 0.781. As we expected, using the optimized feature

set (660 feature) that chosen using NSGA-II enhanced the

classification performance by about 5% (i.e., ACC = 0.865

and AUC = 0.861). To improve classifier performance, we

used two optimization techniques include GSO and BO.

Table 2 Evaluation metrics

Metric Abbreviation Equation # Definition

Accuracy ACC tpþtn
tpþfpþtnþfn

(3) The percentage between number of cases that are correctly classified and the total

number of cases

Specificity SP tn
tnþfp (4) The percentage of the negative class cases that classified correctly

Area under the

ROC curve

AUC sp�npþðnnþ1Þ=2

npnn
(5) It measures the ability of the model to discriminate between classes. Where sp is the

number of cases in the positive class, nn and np is the number of negative and

positive class respectively

Mean Square

error

MSE 1
N

PN
i¼1 yi � yið Þ2 (6) Measure the differences between values (sample or population values) predicted by a

model or an estimator and the values observed

Mean absolute

error

MAE 1
N

PN
i¼1 yi � yij j (7) Measure the closeness of the prediction to the eventual outcomes

Table 3 Results of single classifiers

Classifier Feature optimization Classifier optimization CV accuracy ACC Sn Sp AUC

Single DNN – – 0.747 ± 0.02330 0.677 0.756 0.714 0.730

– GS 0.7562 ± 0.0119 0.756 0.759 0.726 0.740

– BO 0.758 ± 0.02370 0.750 0.769 0.725 0.752

NSGA-II – 0.791 ± 0.01190 0.793 0.824 0.793 0.787

NSGA-II GS 0.800 ± 0.01190 0.803 0.844 0.761 0.791

NSGA-II BO 0.816 ± 0.09800 0.802 0.783 0.753 0.801
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Using GSO enhance the performance by 0.01 and 0.02 in

terms of ACC and AUC, respectively (i.e., ACC = 0.890

and AUC = 0.886). The best performance is obtained by

using the Bayesian optimization technique for tuning the

hyperparameters (CLR = 0.001, batch size = 128, drop-

out = 0.1) of the classification model (i.e., ACC = 0.913

and AUC = 0.906). Figure 9b details show the perfor-

mance of all experiments with the ensemble model. The

obtained results confirm the strength of our proposed sys-

tem for predicting sepsis disease. To the best of our

knowledge, our proposed system is the first algorithm that

exceeds 0.90 for AUC based only on the data of the first six

hours [52, 123, 124]. Additionally, it achieved superiority

over traditional severity scores such as SOFA and MEWS

that mainly used for screening sepsis. Our proposed model

achieved superiority over state-of-the-art for various rea-

sons include the following. (1) depend on an applicable

definition that utilizes various measurements for various

diseases (2) depending on several measurements that

related to various types of diseases. (3) choosing the opti-

mum feature set using the feature optimization technique.

To conclude, the experiment results demonstrated that each

feature has an important role in both the classification and

the regression tasks.

5.3.4 Statistical analysis

To ensure a significant difference between all the simple

and ensemble DNN models, all models were compared

using the Friedman test [125]. The Friedman test is a non-

parametric test used to determine if there is a significant

difference between models without specifying which is

best. To choose the best performance model according to

statistical testing, the average rank for each model was

calculated based on the Nemenyi test [126]. Results of the

Nemenyi test can be visualized using a critical difference

diagram. Figure 10 shows a comparison between classifi-

cation models based on the critical difference calculated

from the results of the Nemenyi test for all models. The test

shows a significant difference between all models (Statis-

tics = 6.34, P\0:005). Figure 10 shows that using a single

DNN without feature optimization gives the worst perfor-

mance (i.e., AUC = 0.730, P\0:005), next worse was the

model with the same feature set after applying tuning with

the Bayesian optimization technique. Using feature opti-

mization increases the performance of the model (i.e.,

AUC = 0.791, P\0:005). When using ensemble neural

networks, the worst performance was obtained when using

the whole feature set without feature optimization (i.e.,

AUC = 0.781, P\0:005). Choosing the optimal feature set

increases the performance (i.e., AUC = 0.861, P\0:005)

while using LR as the meta classifier and a further boost is

given when (i.e., AUC = 0.865, P\0:005) using NN as the

meta classifier. Using the grid search algorithm enhances

the classifier performance (i.e., AUC = 0.886, P\0:005).

The best-performing model was obtained when using the

optimal feature set with the Bayesian-based optimized

ensemble model and a neural network as the meta classifier

(i.e., AUC = 0.906, P\0:005). Table 4 shows all evalua-

tion metrics for the ensemble models with various settings.

5.3.5 Comparison with scoring systems

To ensure the superiority of our stacking ensemble DL

model, we conducted several experiments to compare it, in

terms of AUC score, with the two common scoring systems

used to identify sepsis: SOFA and MEWS. As mentioned

earlier, SOFA and MEWS are commonly used in predict-

ing sepsis. First, we calculated these scores based on the

appropriate features and calculation approaches. Appendix

2, Tables 12 and 13 detail the calculation techniques for

SOFA and MEWS, respectively. Note that all scoring

Fig. 9 (a) Results of single classification models. (b) Results of ensemble classification model
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systems calculated using data that had been preprocessed to

provide a fair comparison. As shown in Table 5. SOFA

achieves better results than MEWS (i.e., ACC = 0.740,

AUC = 0.78). From the above experiments, we make the

following observations. (1) Most scoring systems achieve

proximate performance, which is not reliable enough to

provide sepsis prediction, (2) the fusion between various

features from several sources produces more accurate

predictions compared to others models based on fewer

features, (3) the deep stacked models is more robust and

accurate than the traditional scoring systems, (4) using a

stacked ensemble and optimized DL classification model

enhances the performance compared to the single DL

model, (5) statistical features that are derived from time-

series data are more significant than baseline data. Fig-

ure 11 shows a comparison between the traditional scores

and our model.

5.3.6 Comparison with standard ensemble classifiers

To explore the performance of other machine learning

approaches and compare it with our work, in this step, we

utilized state-of-the-art machine learning algorithms (i.e.,

standard ensemble classifiers). The ensemble classifiers

tested included homogeneous classifiers (i.e., random for-

est (RF), bagging, and extreme gradient boosting

(XGBoost)) as well as heterogeneous classifiers such as

voting. The above ensemble classifiers were tested under

various conditions include (i.e., with and without feature

selection, with and without hyperparameter optimization).

The optimized hyperparameters can be found in Appendix

3. Table 6 details all the experiments with ensemble clas-

sifiers. Note that stratified tenfold cross-validation was

used to train and evaluate all models.

From Table 6, we can observe the following. Standard

ensemble classifiers without feature optimization and

hyperparameter optimization provide the worst perfor-

mance RF (ACC = 0.606, AUC = 0.611), XGBoost

(ACC = 0.621, AUC = 0.650), Bagging (ACC = 0.608,

AUC = 0.631). Overall performance improved when using

feature optimization (NSGA II) by (2–6)%, giving perfor-

mance of RF (ACC = 0.642, AUC = 0.650), XGBoost

(ACC = 0.822, AUC = 0.836), and Bagging (ACC =

0.827, AUC = 0.852). To improve classifier performance,

we performed hyperparameter optimization using both BO

and GSO. The best performance was obtained after tuning

the bagging algorithm with the BO technique to achieve

(ACC = 0.844, AUC = 0.853). Performance of the pro-

posed ensemble DL model was compared with the best

results from the standard ensembles. Figures 12, 13 illus-

trates that the proposed framework outperforms all other

classifiers.

Fig. 10 SM: Single Model,

GSO: Grid search optimization,

BO: Bayesian optimization. FS:

Feature selection (NSGA II),

EM: Ensemble classifier, LR:

refers to using Logistic

regression as a meta classifier,

NN: refers to using neural

network as a meta classifier

Table 4 Results of the ensemble

classifiers
Classifier MC FO CO CV accuracy ACC Sn Sp AUC

Ensemble DNN LR – – 0.797 ± 0.001 0.727 0.766 0.715 0.781

NSGA-II – 0.872 ± 0.055 0.865 0.812 0.801 0.851

NSGA-II GS 0.891 ± 0.032 0.872 0.882 0.831 0.863

NSGA-II BO 0.880 ± 0.009 0.880 0.861 0.811 0.898

NN – – 0.808 ± 0100 0.781 0.749 0.713 0.752

NSGA-II – 0.870 ± 0.003 0.882 0.872 0.826 0.865

NSGA-II GS 0.916 ± 0.0282 0.890 0.909 0.821 0.886

NSGA-II BO 0.901 ± 0.0431 0.913 0.921 0.832 0.906

MC: Meta classifier, FO: Feature optimization, CO: Classifier optimization technique
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5.3.7 Comparison with the literature

As shown in Table 7, we compare our model with other

state-of-the-art approaches from the literature in terms of

performance and architecture. Note that we chose to only

compare with studies that use the MIMIC dataset to pro-

vide a fair comparison. As shown in Table 7, most of the-

state-the-art methods have followed the sepsis 3 definitions

to determine sepsis in patients and depend on a small

number of features to predict sepsis. Even though they

achieved adequate results, these studies cannot be consid-

ered medically acceptable. They did not take into consid-

eration the progression of various diseases which can result

from sepsis. Medical experts usually depend on different

measurements to diagnosis sepsis according to the patient’s

health status and what measurements are expected to be

affected in case of sepsis—[57 and 61] particularly suffer

from this limitation. Compared with [124], this study

depends on a larger sample size of 4,915 patients. How-

ever, that study achieved a result of 0.750 in terms of AUC.

This returns us to the issue of previous approaches

depending on insight algorithm that are complex and do not

consider changes in several important features. The same is

true of [52], this study also depended on insights with a

sample size of 1840 patients, resulting in an AUC of 0.781.

He et al. [8] achieved sensitivity and specificity of

0.641 ± 0.022 and 0.844 ± 0.007, respectively, using an

XGBoost ensemble classifier to predict sepsis in ICUs.

That study used forty features from the MIMIC III dataset

and used three LSTM models to extract deep features.

However, that study has not proposed any ensemble

models for the classification task. In [12, 29], authors used

decision tree, and linear regression machine learning

techniques for predicting sepsis resulting in AUCs of 0.890

and 0780, respectively, but these studies neglected the role

of time in predicting sepsis and its effect in the progression

of the patient’s condition. As in our study, the authors in

[50] used ensemble machine learning (i.e., XGBoost) to

predict sepsis using only 6 features. Despite their impres-

sive result in terms of an AUC = 0.880, this reliance on a

small number of features means its predictions lack some

credibility in the medical domain. One of the strengths of

our model is its ability to predict sepsis using only the first

Table 5 Comparison with

scoring systems
Classifier or score CV accuracy ACC Sp Sn AUC

MEWS – 0.671 0.662 0.631 0.670

SOFA – 0.740 0.705 0.777 0.78

Best single classifier 0.816 ± 0.0980 0.802 0.783 0.753 0.801

Best performance of ensemble classifier 0.901 ± 0.0431 0.913 0.921 0.832 0.906

Fig. 11 Comparison with scoring systems

Table 6 Standard ensemble

classifiers results
Classifier FO CO CV accuracy ACC Se Sp AUC

RF – – 0.618 ± 0.0035 0.606 0.717 0.501 0.611

NSGA-II – 0.650 ± 0.0021 0.642 0.686 0.607 0.632

NSGA-II GS 0.801 ± 0.0312 0.800 0.898 0.782 0.803

NSGA-II BO 0.851 ± 0.0088 0.843 0.857 0.781 0.821

XGBoost – – 0.632 ± 0.0009 0.621 0.754 0.501 0.650

NSGA-II – 0.667 ± 0.0119 0.653 0.857 0.800 0.762

NSGA-II GS 0.832 ± 0.0341 0.822 0.812 0.856 0.836

NSGA-II BO 0.866 ± 0.0441 0.851 0.892 0.842 0.864

Bagging – – 0.612 ± 0.0280 0.608 0.783 0.532 0.631

NSGA-II – 0.831 ± 0.0131 0.827 0.852 0.700 0.852

NSGA-II GS 0.851 ± 0.0080 0.843 0.856 0.832 0.862

NSGA-II BO 0.876 ± 0.00323 0.844 0.892 0.831 0.853
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six hours after patient admission. The results in the best

model are not seen anywhere in the literature

(AUC = 0.906).

5.4 Results of regression layer

This section investigates the use of machine learning and

deep learning models to predict both the sepsis onset time

and the blood pressure at that time. The novelty of this lies

in designing a multitask deep learning model based on

features extracted from the first six hours. We choose to

predict blood pressure at the sepsis onset time, as it is the

primary measurement that can be used to predict sepsis

according to various studies [29, 32, 127]. To the best of

our knowledge, this is the first study that focuses on pre-

dicting sepsis onset time. The period from which data is

taken to make the prediction was chosen by a medical

expert.

5.4.1 Regular machine learning model

In this section, we use machine learning methods including

(i.e., LIR, Lasso, ridge, SGB, GB, RF, and DT) to predict

both the onset time and the blood pressure at that time use

traditional. The optimized hyperparameters can be found in

Appendix 3. As shown in Table 8, the models were eval-

uated using mean absolute error (MAE) and Root mean

square error (RMSE). First, for predicting the onset time,

we observed that SGD gives the highest error RMSE =

18.66 ± 1.98 and MAE = 17.22 ± 1.88, followed by

linear regression which gives RMSE = 18.09 ± 1.65 and

MAE = 17.88 ± 1.66. The best performance was obtained

from RF with errors RMSE = 13.44 ± 2.88 and MAE =

13.89 ± 1.76. Figure 14a details the experiments for

predicting onset time. Figure 14b shows the performance

Fig. 12 Comparison between the best standard ensemble model and

the proposed model

Fig. 13 Comparison with other models from the literature

Table 7 Comparison with other models from the literature

References Sample

size

Data source Features Sepsis

definition

Hours before

onset

Algorithm AUC

[124] 4915 MIMIC III 12 Sepsis 3 6 h Insights 0.750

[12] 17,487 MIMIC II 8 Sepsis 3 – Decision tree 0.890

[50] 2350 MIMIC III 6 SIRS criteria – XGB and

MLP

0.880

[52] 1840 MIMIC II – Sepsis 3 7 h Insights 0.880

[29] MIMIC II 2 Sepsis 3 3 h LR 0.780

[67] 6160 Data from Johns Hopkins

PICU

126 Sepsis 3 – XGBOOST 0.90

[65] 5154 MIMIC III 76 SOFA Score 6 h CNN & RF 0.842

[57] 2970 MIMIC III 18 Sepsis 3 RF 0.81

[61] 40.336 MIMIC III 65 Sepsis 3 4,8,12 LSTM &

CNN

0.89, 0.88,

0.87

[128] MIMICIII 80 SIRS 6 DL 087–0.90

[66] 1588 106 Sepsis 3 8 XGBoost 0.89

Our model 4680 MIMIC III 22 SIRS Criteria 6–48 h Ensemble DL 0.906
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for the blood pressure prediction, SGD gave the lowest

performance RMSE = 20.22 ± 1.66, and MAE = 19.67

± 2.02 followed by RF with error values RMSE = 18.33

± 3.12 and MAE = 17.17 ± 1.88, the best performance

was obtained with GB with RMSE = 16.01 ± 2.55 and

MAE = 15.22 ± 2.55. The results show that there is an

opportunity for improving the performance. Therefore, in

the following section we utilize single task and multitask

DL models to improve performance and develop more

robust and confident models.

5.4.2 Results of the deep learning model

Multitask learning is a multi-objective problem where the

overall optimization of the DL model can be improved. In

this section we look at concurrently optimizing two

regression tasks. The developed model tells medical

experts the onset time and the predicted blood pressure at

that time. To the best of our knowledge, this study is the

first study that predicts the future onset of sepsis in a

patient from the first 6 h of that patient’s data. These

Table 8 Machine learning

regression models for both onset

time and blood pressure

Predicting the onset time

Model The optimized hyper parameters RMSE MAE

LIR fit_intercept = True, copy_X = True 18.09 ± 1.65 17.88 ± 1.66

RF n_estimators = 100, max_depth = 2 13.88 ± 3.44 13.09 ± 3.32

Ridge Alpha = 1.5 18.01 ± 2.22 18.66 ± 2.23

SGD Alpha = 0.13, penalty = ’l2’ 18.66 ± 1.98 17.22 ± 1.88

Lasso Alpha = 1.0, normalize = False 17.61 ± 1.54 15.65 ± 1.64

GB n_estimators = 100, max_depth = 2, learning_rate = 1.5 13.44 ± 2.88 13.89 ± 1.76

DT max_depth = 3 16.22 ± 3.88 18.22 ± 2.89

Predicting the blood pressure in the onset time

LIR fit_intercept = True, normalize = True, copy_X = True 16.09 ± 2.55 15.78 ± 2.89

Lasso Alpha = 1.6, normalize = False 19.88 ± 3.92 18.59 ± 4.02

Ridge Alpha = 1.5 18.33 ± 3.12 17.17 ± 1.88

SGD Alpha = 0.3, penalty = ’l2’ 20.22 ± 1.66 19.67 ± 2.02

RF n_estimators = 130, max_depth = 3 18.33 ± 3.02 18.05 ± 3.12

GB n_estimators = 130, max_depth = 3, learning_rate = 1.5 16.01 ± 2.55 15.22 ± 2.55

DT max_depth = 2 18.76 ± 2.81 17.96 ± 3.11

Fig. 14 (a) Prediction of the onset time, (b) predict the blood pressure at the sepsis onset time
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experiments followed the same procedure as the previous

tests. First, we tested single task deep learning models. We

used 20 hidden layers (chosen by trial and error) and used

the ReLU activation function in the hidden layers. The

model was fit using mean absolute error (MAE), Root

mean square error (RMSE), and an Adam optimizer

(stochastic gradient descent). The optimized hyperparam-

eters can be found in Appendix 3. Using single task deep

learning resulted in a prediction model with (RMSE =

16.11 ± 3.87) and (MAE = 16.23 ± 3.33) for predicting

onset time, and (RMSE = 15.44 ± 2.55) (MAE = 15.13

± 3.44) for predicting the blood pressure at that time. To

enhance performance, we tuned the hyperparameters using

GSO and BO. Tuning the classifier with BO enhanced the

results by 2–4%, with (RMSE = 13.23 ± 2.11) and

(MAE = 13.45 ± 1.88) for predicting onset time and

(RMSE = 12.65 ± 3.12), (MAE = 13.17 ± 1.87) for pre-

dicting the blood pressure at that time. The best perfor-

mance came after tuning with GSO achieving

(RMSE = 13.88 ± 2.78) (MAE = 12.56 ± 2.02) for pre-

dicting onset time and (RMSE = 12.34 ± 1.66), (MAE =

12.67 ± 2.98) for predicting the blood pressure at that

time. The first half of Fig. 15a shows the results of using

the single task DL model to predict the onset

time. Moreover, Fig. 15b shows the performance of pre-

dicting the blood pressure during the beginning of the

onset time using single task DL.

Second, we utilized multitask modeling, which allows us

to share important information between tasks. Theoretically,

multitask modeling should improve the performance, make

the model more stable and give more confidence in its pre-

dictions, the results we achieved with our multitask model

back this up. Table 9 clarifies the performance improvement

of the multitask model compared with the single task models.

We utilized the multitask model to predict two metrics: the

sepsis onset time (to a particular hour interval) and the blood

pressure at that time. It is worth noting that using a multitask

DL model achieved better performance than using single

task DL models. We are also interested in tackling the

challenges that come with multitask models. For example, in

our model with two regression tasks, the model suffered from

overfitting with different rates. To solve this issue, we

Fig. 15 (a) Predicting onset time using single and multitask models, (b) predicting blood pressure at onset time using single and multitask models
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propose the use of heuristics, including the use of the early

stopping technique by defining a specific number of epochs

for each task based on single task training. We also propose

the use of single task loss weighting, which may also reduce

the problem. As we can see in Table 9, the multitask model

achieved reduced errors for both RMSE and MAE with

values ranging from (0 to 3) with (RMSE = 12.09 ± 1.11)

(MAE = 11.03 ± 2.31) for predicting onset time and

(RMSE = 11.11 ± 2.62), (MAE = 10.88 ± 2.89) for pre-

dicting the blood pressure at that time. As expected, using

multitask learning for related tasks improves overall per-

formance, resulting in a more robust model. Considering a

multi-objective function helps us in the optimization of a

single task model, rather than being sensitive to the perfor-

mance of every single task. The second half of Fig. 15a

shows the results of using a multitask DL model to predict

the onset time. We also observed that tuning the hyperpa-

rameters contributed to improving the performance of the

regressor. Using BO achieved a performance of RMSE =

10.69 ± 2.31 and MAE = 10.19 ± 1.90. The lowest error

was obtained when using the GSO technique achieving

RMSE = 9.22 ± 1.31 and MAE = 9.67 ± 1.63.

6 Study limitations

Although the proposed model gives us a promising tool for

sepsis prediction, it still has many limitations that need

further attention. First, because the MIMIC III dataset is

extracted from one institution, we cannot guarantee the

generalization of our results. In future studies, we will

explore other datasets. Second, we depend on the ICD 9

codes gold standard to define sepsis, this may result in

failing to detect all sepsis patients in the dataset. Third, the

imputation process in which we average all measurements

for each hour period may lead to the loss of some temporal

values which could negatively affect model performance.

Therefore, we intend to work on better imputation tech-

niques to capture this missing data. Fourth, the sequence of

lab test results mainly depends on physician requests.

Accordingly, the gold standard is highly subjective.

Therefore, finding a consistent gold standard definition is

an important goal during future exploration in this area.

Fifth, summarizing time series data and working with

feedfoward neural networks may mean discarding many

temporal features in those multivariate series. Utilizing

other deep learning models such as LSTM and CNN are

expected to improve the performance of both classification

and regression models. These limitations will be addressed

in our future studies.

7 Conclusion

This paper proposed a multitask multilayer model for

classification and regression tasks. The model was applied

to predict sepsis, sepsis onset time, and blood pressure at

that time. First, data were preprocessed for irregular time

sampling, outlier detection, and imbalanced classes. Sec-

ond, NSGA-II was used for feature selection. NSGA II, a

feature subset selection algorithm, was combined with an

ANN, a learning algorithm, to discover the optimal set of

features that will minimize errors. Third, the optimal fea-

ture set extracted during the second phase was used to build

an ensemble neural network classifier. This system was

tested with data from 4500 patients in its task to predict

sepsis (6–48) hours before the onset time. This makes up

the model’s first layer. Data from 2350 sepsis patients were

used for multitask learning to predict patient’s vital signs.

This makes up the model’s second layer. Our proposed

deep learning model performed better than several scores,

i.e., SOFA and MEWS, that are traditionally used to

identify sepsis. The proposed classification model achieved

an accuracy of 0.913, a specificity of 0.921, a recall of

0.832, and an AUC of 0.906. Proposed multitask regression

model achieved an RMSE of 10.26 and 9.22 for predicting

the onset time and the blood pressure at that time,

respectively. In the future, we will test our model with

Table 9 Performance of single task and multitask regression models for both onset time and blood pressure

Predicting the onset time Predicting the blood pressure

Model Optimization RMSE MAE RMSE MAE

Single deep learning model – 16.11 ± 3.87 16.23 ± 3.33 15.44 ± 2.55 15.13 ± 3.44

BO 13.23 ± 2.11 13.45 ± 1.88 12.65 ± 3.12 13.17 ± 1.87

GSO 13.88 ± 2.78 12.56 ± 2.02 12.34 ± 1.66 12.67 ± 2.98

Predicting the onset time Predicting the blood pressure

Model optimization RMSE MAE RMSE MAE

Multitask deep learning model – 12.09 ± 1.11 11.03 ± 2.31 11.11 ± 2.62 10.88 ± 2.89

BO 11.52 ± 2.31 10.32 ± 1.83 10.69 ± 2.31 10.19 ± 1.90

GSO 10.26 ± 1.66 11.67 ± 1.94 9.22 ± 1.31 9.67 ± 1.63

Neural Computing and Applications

123



other real ICU data sets. We will explore the role other

deep learning models could play, including LSTM and

CNN, when dealing with time-series data. Finally, we will

provide domain experts with clear justifications for deci-

sions coming from our model.

Appendix 1

See Tables 10, 11.

Table 10 List of abbreviations

Abbreviation Term

ADASYN Adaptive synthetic sampling

ANN Artificial neural network

AUC Area under the roc curve

BO Bayesian optimization

CHMM Coupled hidden Markov models

CNN Convolutional neural network

CO Classifier optimization

CV Cross-validation

DIC Disseminated intravascular coagulation

DL Deep learning

DNN Deep neural network

DT Decision tree

EHR Electronic health record

ESICM European society of intensive care medicine

FO Feature optimization

FS Feature extraction

GB Gradient boosting regression

GSO Both grid search optimization

ICU Intensive care unit

IG Information gain

LASSO Lasso regression

LOS Length of stay

LSTM Long short-term model

LR Logistic regression

LIR Linear regression

CLS Classifier Learning rate

MAE Mean absolute error

MC Meta classifier

MEWS Modified early warning score

MICRO- GA Micro genetic algorithm

MIMIC III Medical information mart from the intensive care MIMIC-III

ML Machine learning

MLP Multilayer perceptron

MOGA Multi-objective genetic algorithm

MTL Multitask learning

NSGA II Non-dominated sorting genetic algorithm II

RELU Rectified linear unit

RF Random forest

RMSE Root mean square error

RNN Recurrent neural network

SCCM Society of critical care medicine

SIRS Systemic inflammatory response syndrome

SMOTE Synthetic minority oversampling technique

SOFA Sequential organ failure assessment

SVM Support vector machine

WBC White blood cells
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Table 11 Features used for Sepsis

F. No Item_id Feature name T. Name Type Normal range UoM Max mean min

Demographic

1 – Age Patients N – Y 90 35 15

2 – Gender Patients C – – – – -

3 – Weight ICU stays N – kg 160 73 47

4 – BMI Patient & ICU N – kg/m2 50 25 15

5 50,863 Alkaline phosphatase Chartevents N 30–250 U 300 151.23 20

6 50,862 Albumin Chartevents N 3.5 – 5 g 5.6 3.5–5 .8

7 50,910 Creatine kinase (CK) Lab events N 15- 105 U/L 2238 85 3

8 1525 Creatinine Chartevents N 7 to 1.3 Ml/dl 647 12 0

9 675 Blood Urea Nitrogen (BUN) Chartevents N 10–20 Ml/dl 270 0 32.88

10 411 Heart rate Chartevents N 60–100 p/m 300 60 40

11 2381 Respiratory rate Chartevents N 14- 40 B/m 60 18 6

12 646 SpO4 Chartevents N 94–100% % 40 96 100

13 616 Respiratory effort Chartevents C – – – – -

14 677 Temperature C (calc) Chartevents N 37.5 mmHg 41..5 0 30

15 440,054 Arterial blood pressure means Chartevents N 100–140 mmHg 95.1 90 141.8

16 440,050 Arterial blood pressure systolic Chartevents N 140 mmHg 171 -135 81.44

17 440,051 Arterial blood pressure diastolic Chartevents N 80 mmHg 150 80 30

18 780 Arterial pH Chartevents N 7.35- 7.45 mmHg 7.87 6 6.80

19 778 Arterial PaCO4 Chartevents N 35–45 mm Hg 100 54 10

20 779 Arterial PaO2 Chartevents N 88–100 mmHg 500 340 40

21 444,848 Arterial base excess Chartevents N -2 ? 2 mEq/L 4 ? 1 -10

22 198 GSC total Chartevents N 15 – 15 – 3

22 40,069 Urine out void outputevents N .3- .5 ml for kg per H Ml/dl – – -

23 40,086 Lactate Chartevents N 4–4 mmol/L 5 3 4

24 445,664 Glucose level Chartevents N 80–140 Ml/dl 40 110 500

25 447,457 Platelet count Chartevents N 150–400(000) N 140 438 400

26 813 Hematocrit Chartevents N 39- 44 M,35–45 F % 36 64

27 440,448 Hemoglobin Chartevents N 13–17 M,14–16 F g/dl 40 14 1

28 1146 Art.pH Chartevents N 7.8.7.44 – 7.8 7 0

29 440,546 WBC Chartevents N 4000–11,000 N 4 7 11

30 490 PAO4 Chartevents N 88–100 mmHg 160 93 60

31 447,466 partial thromboplastin time (PTT) Chartevents N 40–70 second 89 55 14

32 447,073 Anion gap Chartevents N 3–11 L 0 8 54

33 861 WBC Chartevents N (4–11,0000) num 11 560 3

34 447,443 HCO3 (serum) Chartevents N 44–46 N 40 30 0

35 227,467 INR Chartevents N 2.0–3.0 – 1.1 2 [ 3

36 43,365 urine output/kg/hr Chartevents N 0.3–0.5 ML 0.1 0.4 0.8

37 3801 SGOT Chartevents N 8–48 Unit/L 8 45 50

38 3802 SGPT Chartevents N 7–65 Unit/L 5 42 60

39 942 Blood culture Chartevents – – – – – –

Table 10 (continued)

Abbreviation Term

XGBOOST Extreme gradient boosting

SICU Surgical intensive care unit

MICU Medical intensive care unit

CRSU Cardiac surgery recovery unit
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Appendix 2

See Tables 12, 13, 14.

Appendix 3

See Table 15.

Table 12 Sepsis-related organ failure assessment scoring system

SOFA Score

Features 0 1 2 3 4

Pao2/fio2 mm Hg C 400 \ 400 \ 300 \ 200 \ 100

Platelets 9 103/lL C 150 \ 150 \ 100 \ 50 \ 20

Bilirbubin mg/dL \ 1.2 1.2–1.9 2.0- 5.9 6.0–11.9 [ 12.0

Cardiovascular MAP C 70 mm Hg MAP\ 70 mm Hg Dopamine\ 5 Dopamine (5.1- 15) 12.0

Glasgow Coma Score 15 13–14 10–12 6–9 \ 6

Creatinine mg/dL \ 1.2 1.2–1.9 2.0–3.4 3.5–4.9 [ 5.0

Urine output, mL/dl \ 500 \ 200

Table 13 qSOFA Score

qSOFA (Quick SOFA) Points

Criteria Points Respiratory rate C 22/min 1 1 1

Change in mental status 1

Systolic blood pressure B 100 mmHg 1

Table 14 Modified Early

Warning Score
MEWS Score

Features 3 2 1 0 1 2 3

Heart rate \ 70 71–80 81–100 101–199 [ 200

Systolic blood pressure \ 40 4050 51–100 101–110 111–129 [ 130

Respiratory rate (RR) \ 9 9–14 15–20 21–29 [ 30

Temprature \ 35 35–38.4 12.0 [ 38/5

Table 15 Hyperparameters for NSGA-II, ensemble model, regular classifiers, regular regressors, and deep learning regressor

NSGA II hyperparameters Value

Min number of features 10

Population size 100

Max number of generations 80

Selection Schema Non dominant sorting

Maximal fitness Infinity

P Inilaize 0.5

P mutation -1.0

P cross over 0.5
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Table 15 (continued)

NSGA II hyperparameters Value

Crossover Type Uniform

Normalize weights Yes

DL regression model Value

Regularization L2 = 0.2

Dropout 0.1

Batch size 128

Activation function in hidden layers ReLU

Number of epochs 100

Batch size 128

Number of hidden layers 15

Activation function in output layer ReLU

Optimizer used ADAM

Loss function Mean squared error

Model Hyperparameters for onset time prediction

LR fit_intercept = True, copy_X = True

RF n_estimators = 100, max_depth = 2

Ridge Alpha = 1.5

SGD Alpha = 0.13, penalty = ’l2’

Lasso Alpha = 1.0, normalize = False

GB n_estimators = 100, max_depth = 2, learning_rate = 1.5

DT max_depth = 3

Model Hyperparameters for blood pressure prediction

LR fit_intercept = True, normalize = True, copy_X = True

Lasso Alpha = 1.6, normalize = False

Ridge Alpha = 1.5

SGD Alpha = 0.3, penalty = ’l2’

RF n_estimators = 130, max_depth = 3

GB n_estimators = 130, max_depth = 3, learning_rate = 1.5

DT max_depth = 2

Ensemble model hyperparameters Value

Number of Deep learning models 4 models

Input layer 263 unit

Number of layers 20

Regularization L2 = 0.1

Dropout 0.1

Batch size 128

Activation function in hidden layers ReLU

Number of epochs 100

Batch size 300

Number of hidden layers 15

Activation function in output layer Sigmoid

Optimizer used ADAM

Meta classifiers NN, LR
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