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Abstract This paper presents ST-Hadoop; the first full-fledged open-source MapRe-

duce framework with a native support for spatio-temporal data. ST-Hadoop is a com-

prehensive extension to Hadoop and SpatialHadoop that injects spatio-temporal data

awareness inside each of their layers, mainly, language, indexing, and operations lay-

ers. In the language layer, ST-Hadoop provides built in spatio-temporal data types and

operations. In the indexing layer, ST-Hadoop spatiotemporally loads and divides data

across computation nodes in Hadoop Distributed File System in a way that mimics

spatio-temporal index structures, which result in achieving orders of magnitude bet-

ter performance than Hadoop and SpatialHadoop when dealing with spatio-temporal

data and queries. In the operations layer, ST-Hadoop shipped with support for three

fundamental spatio-temporal queries, namely, spatio-temporal, range, top-k nearest

neighbor, and join queries. Extensibility of ST-Hadoop allows others to extend fea-

tures and operations easily using similar approaches described in the paper. Exten-

sive experiments conducted on large-scale dataset of size 10 TB that contains over

1 Billion spatio-temporal records, to show that ST-Hadoop achieves orders of magni-

tude better performance than Hadoop and SpaitalHadoop when dealing with spatio-

temporal data and operations. The key idea behind the performance gained in ST-

Hadoop is its ability in indexing spatio-temporal data within Hadoop Distributed File

System.
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1 Introduction

The importance of processing spatio-temporal data has gained much interest in the

last few years, especially with the emergence and popularity of applications that cre-

ate them in large-scale. For example, Taxi trajectory of New York city archive over

1.1 Billion trajectories [24], social network data (e.g., Twitter has over 500 Million

new tweets every day) [30], NASA Satellite daily produces 4TB of data [21,22],

and European X-Ray Free-Electron Laser Facility produce large collection of spatio-

temporal series at a rate of 40GB per second, that collectively form 50PB of data

yearly [9]. Beside the huge achieved volume of the data, space and time are two fun-

damental characteristics that raise the demand for processing spatio-temporal data.

The current efforts to process big spatio-temporal data on MapReduce en-

vironment either use: (a) General purpose distributed frameworks such as

Hadoop [13] or Spark [26], or (b) Big spatial data systems such as ESRI tools on

Hadoop [33], Parallel-Secondo [18], MD-HBase [23], Hadoop-GIS [2], GeoTrel-

lis [15], GeoSpark [35], or SpatialHadoop [6]. The former has been acceptable for

typical analysis tasks as they organize data as non-indexed heap files. However, using

these systems as-is will results in sub-performance for spatio-temporal applications

that need indexing [20,29,16]. The latter reveal their inefficiency for supporting time-

varying of spatial objects because their indexes are mainly geared toward processing

spatial queries, e.g., SHAHED system [7] is built on top of SpatialHadoop [6].

Even though existing big spatial systems are efficient for spatial operations,

nonetheless, they suffer when they are processing spatio-temporal queries, e.g., ”find

geo-tagged news in California area during the last three months”. Adopting any

big spatial systems to execute common types of spatio-temporal queries, e.g., range

query, will suffer from the following: (1) The spatial index is still illsuited to effi-

ciently support time-varying of spatial objects, mainly because the index are geared

toward supporting spatial queries, in which result in scanning through irrelevant data

to the query answer. (2) The system internal is unaware of the spatio-temporal prop-

erties of the objects, especially when they are routinely achieved in large-scale. Such

aspect enforces the spatial index to be reconstructed from scratch with every batch

update to accommodate new data, and thus the space division of regions in the spatial-

index will be jammed, in which require more processing time for spatio-temporal

queries. One possible way to recognize spatio-temporal data is to add one more di-

mension to the spatial index. Yet, such choice is incapable of accommodating new

batch update without reconstruction the whole index from scratch.

This paper introduces ST-Hadoop; the first full-fledged open-source MapReduce

framework with a native support for spatio-temporal data, available to download

from [27]. ST-Hadoop is a comprehensive extension to Hadoop and SpatialHadoop

that injects spatio-temporal data awareness inside each of their layers, mainly, index-

ing, operations, and language layers. ST-Hadoop is compatible with SpatialHadoop
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Objects = LOAD ’points’ AS (id:int, Location:POINT, Time:t);

Result = FILTER Objects BY

Overlaps (Location, Rectangle(x1, y1, x2, y2))

AND t < t2 AND t > t1;

(a) Range query in SpatialHadoop

Objects = LOAD ’points’ AS (id:int, STPoint:(Location,Time));

Result = FILTER Objects BY

Overlaps (STPoint, Rectangle(x1, y1, x2, y2), Interval (t1, t2) );

(b) Range query in ST-Hadoop

Fig. 1 Range query in SpatialHadoop vs. ST-Hadoop

and Hadoop, where programs are coded as map and reduce functions. However, run-

ning a program that deals with spatio-temporal data using ST-Hadoop will have or-

ders of magnitude better performance than Hadoop and SpatialHadoop. Figures 1(a)

and 1(b) show how to express a spatio-temporal range query in SpatialHadoop and

ST-Hadoop, respectively. The query finds all points within a certain rectangular area

represented by two corner points 〈x1, y1〉 , 〈x2, y2〉, and a within a time interval

〈t1,t2〉. Running this query on a dataset of 10TB and a cluster of 24 nodes takes

200 seconds on SpatialHadoop as opposed to only one second on ST-Hadoop. The

main reason of the sub-performance of SpatialHadoop is that it needs to scan all

the entries in its spatial index that overlap with the spatial predicate, and then check

the temporal predicate of each entry individually. Meanwhile, ST-Hadoop exploits

its built-in spatio-temporal index to only retrieve the data entries that overlap with

both the spatial and temporal predicates, and hence achieves two orders of magnitude

improvement over SpatialHadoop.

ST-Hadoop is a comprehensive extension of Hadoop that injects spatio-temporal

awareness inside each layers of SpatialHadoop, mainly, language, indexing, MapRe-

duce, and operations layers. In the language layer, ST-Hadoop extends Pigeon lan-

guage [5] to supports spatio-temporal data types and operations. The indexing layer,

ST-Hadoop spatiotemporally loads and divides data across computation nodes in the

Hadoop distributed file system. In this layer ST-Hadoop scans a random sample ob-

tained from the whole dataset, bulk loads its spatio-temporal index in-memory, and

then uses the spatio-temporal boundaries of its index structure to assign data records

with its overlap partitions. ST-Hadoop sacrifices storage to achieve more efficient per-

formance in supporting spatio-temporal operations, by replicating its index into tem-

poral hierarchy index structure that consists of two-layer indexing of temporal and

then spatial. The MapReduce layer introduces two new components of SpatioTem-

poralFileSplitter, and SpatioTemporalRecordReader, that exploit the spatio-temporal

index structures to speed up spatio-temporal operations. Finally, the operations layer

encapsulates the spatio-temporal operations that take advantage of the ST-Hadoop

temporal hierarchy index structure in the indexing layer, such as spatio-temporal

range, nearest neighbor, and join queries.

The key idea behind the performance gain of ST-Hadoop is its ability to load

the data in Hadoop Distributed File System (HDFS) in a way that mimics spatio-

temporal index structures. Hence, incoming spatio-temporal queries can have mini-
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mal data access to retrieve the query answer. ST-Hadoop is shipped with support for

three fundamental spatio-temporal queries, namely, spatio-temporal range, nearest

neighbor, and join queries. However, ST-Hadoop is extensible to support a myriad of

other spatio-temporal operations. We envision that ST-Hadoop will act as a research

vehicle where developers, practitioners, and researchers worldwide, can either use it

directly or enrich the system by contributing their operations and analysis techniques.

The rest of this paper is organized as follows: Section 2 highlights related work.

Section 3 gives the architecture of ST-Hadoop. Details of the language, spatio-

temporal indexing, and operations are given in Sections 4-6, followed by extensive

experiments conducted in Section 8. Section 9 concludes the paper.

2 Related Work

Triggered by the needs to process large-scale spatio-temporal data, there is an in-

creasing recent interest in using Hadoop to support spatio-temporal operations. The

existing work in this area can be classified and described briefly as following:

On-Top of MapReduce Framework. Existing work in this category has mainly fo-

cused on addressing a specific spatio-temporal operation. The idea is to develop map

and reduce functions for the required operation, which will be executed on-top of ex-

isting Hadoop cluster. Examples of these operations includes spatio-temporal range

query [20,29,16], spatio-temporal nearest neighbor [36,34], spatio-temporal join [14,

3,11]. However, using Hadoop as-is results in a poor performance for spatio-temporal

applications that need indexing.

Ad-hoc on Big Spatial System. Several big spatial systems in this category are still

ill-suited to perform spatio-temporal operations, mainly because their indexes are

only geared toward processing spatial operations, and their internals are unaware

of the spatio-temporal data properties [18,28,37,35,31,19,33,23,2,6]. For example,

SHAHED runs spatio-temporal operations as an ad-hoc using SpatialHadoop [6].

Spatio-temporal System. Existing works in this category has mainly focused on

combining the three spatio-temporal dimensions (i.e., x, y, and time) into a single-

dimensional lexicographic key. For example, GeoMesa [10] and GeoWave [12,32]

both are built upon Accumulo platform [1] and implemented a space filling curve to

combine the three dimensions of geometry and time. Yet, these systems do not at-

tempt to enhance the spatial locality of data; instead they rely on time load balancing

inherited by Accumulo. Hence, they will have a sup-performance for spatio-temporal

operations on highly skewed data.

ST-Hadoop is designed as a generic MapReduce system to support spatio-

temporal queries, and assist developers in implementing a wide selection of spatio-

temporal operations. In particular, ST-Hadoop leverages the design of Hadoop and

SpatialHadoop to loads and partitions data records according to their time and spa-

tial dimension across computations nodes, which allow the parallelism of process-

ing spatio-temporal queries when accessing its index. In this paper, we present three

case study of operations that utilize the ST-Hadoop indexing, namely, spatio-temporal

range, nearest neighbor, and join queries. ST-Hadoop operations achieve two or more
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Fig. 2 ST-Hadoop system architecture

orders of magnitude better performance, mainly because ST-Hadoop is sufficiently

aware of both temporal and spatial locality of data records.

3 ST-Hadoop Architecture

Figure 2 gives the high level architecture of our ST-Hadoop system; as the first

full-fledged open-source MapReduce framework with a built-in support for spatio-

temporal data. ST-Hadoop cluster contains one master node that breaks a map-reduce

job into smaller tasks, carried out by slave nodes. Three types of users interact with

ST-Hadoop: (1) Casual users who access ST-Hadoop through its spatio-temporal lan-

guage to process their datasets. (2) Developers, who have a deeper understanding of

the system internals and can implement new spatio-temporal operations, and (3) Ad-

ministrators, who can tune up the system through adjusting system parameters in

the configuration files provided with the ST-Hadoop installation. ST-Hadoop adopts

a layered design of four main layers, namely, language, Indexing, MapReduce, and

operations layers, described briefly below:

Language Layer: This layer extends Pigeon language [5] to supports spatio-

temporal data types (i.e., STPOINT, TIME and INTERVAL) and spatio-temporal oper-

ations (e.g., OVERLAP, KNN, and JOIN). Details are given in Section 4.

Indexing Layer: ST-Hadoop spatiotemporally loads and partitions data across com-

putation nodes. In this layer ST-Hadoop scans a random sample obtained from the

input dataset, bulk-loads its spatio-temporal index that consists of two-layer index-

ing of temporal and then spatial. Finally ST-Hadoop replicates its index into tempo-

ral hierarchy index structure to achieve more efficient performance for processing

spatio-temporal queries. Details of the index layer are given in Section 5.
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MapReduce Layer: In this layer, new implementations added inside SpatialHadoop

MapReduce layer to enables ST-Hadoop to exploits its spatio-temporal indexes and

realizes spatio-temporal predicates. We are not going to discuss this layer any further,

mainly because few changes were made to inject time awareness in this layer. The

implementation of MapReduce layer was already discussed in great details [6].

Operations Layer: This layer encapsulates the implementation of three common

spatio-temporal operations, namely, spatio-temporal range, spatio-temporal top-k

nearest neighbor, and spatio-temporal join queries. More operations can be added

to this layer by ST-Hadoop developers. Details of the operations layer are discussed

in Section 6.

4 Language Layer

ST-Hadoop does not provide a completely new language. Instead, it extends Pigeon

language [5] by adding spatio-temporal data types, functions, and operations. Spatio-

temporal data types (STPoint, Time and Interval) are used to define the schema of

input files upon their loading process. In particular, ST-Hadoop adds the following:

Data types. ST-Hadoop extends STPoint, TIME, and INTERVAL. The TIME

instance is used to identify the temporal dimension of the data, while the time

INTERVAL mainly provided to equip the query predicates. The following code snip-

pet loads NYC taxi trajectories from ’NYC’ file with a column of type STPoint.

trajectory = LOAD ’NYC’ as

(id:int, STPoint(loc:point, time:timestamp));

NYC and trajectory are the paths to the non-indexed heap file and the des-

tination indexed file, respectively. loc and time are the columns that specify both

spatial and temporal attributes.

Functions and Operations. Pigeon already equipped with several basic spatial pred-

icates. ST-Hadoop changes the overlap function to support spatio-temporal opera-

tions. The other predicates and their possible variation for supporting spatio-temporal

data are discussed in great details in [8]. ST-Hadoop encapsulates the implementation

of three commonly used spatio-temporal operations, i.e., range, nearest neighbor, and

Join queries, that take the advantages of the spatio-temporal index. The following ex-

ample ”retrieves all cars in State Fair area represented by its minimum boundary

rectangle during the time interval of August 25th and September 6th” from trajectory

indexed file.

cars = FILTER trajectory

BY overlap( STPoint,

RECTANGLE(x1,y1,x2,y2),

INTERVAL(08-25-2016, 09-06-2016));

ST-Hadoop extended the JOIN to take two spatio-temporal indexes as an input. The

processing of the join invokes the corresponding spatio-temporal procedure. For

example, one might need to understand the relationship between the birds death and

the existence of humans around them, which can be described as ”find every pairs
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from birds and human trajectories that are close to each other within a distance of 1

mile during the last year”.

human_bird_pairs = JOIN human_trajectory, bird_trajectory

PREDICATE = overlap( RECTANGLE(x1,y1,x2,y2),

INTERVAL(01-01-2016, 12-31-2016),

WITHIN_DISTANCE(1) );

ST-Hadoop extends KNN operation to finds top-k points to a given query point Q in

space and time. ST-Hadoop computes the nearest neighbor proximity according to

some α value that indicates whether the kNN operation leans toward spatial, tempo-

ral, or spaito-temporal closeness. The α can be any value between zero and one. A

ranking function Fα(Q, p) computes the proximity between query point Q and any

other points p ∈ P . The following code gives an example of kNN query, where a

crime analyst is interested to find the relationship between crimes, which can be de-

scribed as ”find the top 100 closest crimes to a given crime Q located in downtown

that took place on the 2nd during last year, with α = 0.3”.

k_crimes = KNN crimes_data

PREDICATE = WITH_K=100

WITH_alpha=0.3

USING F(Q, crime);

5 Indexing Layer

Input files in Hadoop Distributed File System (HDFS) are organized as a heap struc-

ture, where the input is partitioned into chunks, each of size 64MB. Given a file, the

first 64MB is loaded to one partition, then the second 64MB is loaded in a second

partition, and so on. While that was acceptable for typical Hadoop applications (e.g.,

analysis tasks), it will not support spatio-temporal applications where there is always

a need to filter input data with spatial and temporal predicates. Meanwhile, spatially

indexed HDFSs, as in SpatialHadoop [6] and ScalaGiST [19], are geared towards

queries with spatial predicates only. This means that a temporal query to these sys-

tems will need to scan the whole dataset. Also, a spatio-temporal query with a small

temporal predicate may end up scanning large amounts of data. For example, con-

sider an input file that includes all social media contents in the whole world for the

last five years or so. A query that asks about contents in the USA in a certain hour

may end up in scanning all the five years contents of the USA to find out the answer.

ST-Hadoop HDFS organizes input files as spatio-temporal partitions that satisfy

one main goal of supporting spatio-temporal queries. ST-Hadoop imposes temporal

slicing, where input files are spatiotemporally loaded into intervals of a specific time

granularity, e.g., days, weeks, or months. Each granularity is represented as a level in

ST-Hadoop index. Data records in each level are spatiotemporally partitioned, such

that the boundary of a partition is defined by a spatial region and time interval.

Figures 3(a) and 3(b) show the HDFS organization in SpatialHadoop and ST-

Hadoop frameworks, respectively. Rectangular shapes represent boundaries of the
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(b) ST-Hadoop
Daily Level

day 1

(a) SpatialHadoop

All data

(c) ST-Hadoop
Monthly Level

month 1

Spatio-temporal query

day 365 month 12

Fig. 3 HDFSs in ST-Hadoop VS SpatialHadoop

HDFS partitions within their framework, where each partition maintains a 64MB of

nearby objects. The dotted square is an example of a spatio-temporal range query.

For simplicity, let’s consider a one year of spatio-temporal records loaded to both

frameworks. As shown in Figure 3(a), SpatialHadoop is unaware of the temporal lo-

cality of the data, and thus, all records will be loaded once and partitioned according

to their existence in the space. Meanwhile in Figure 3(b), ST-Hadoop loads and par-

titions data records for each day of the year individually, such that each partition

maintains a 64MB of objects that are close to each other in both space and time. Note

that HDFS partitions in both frameworks vary in their boundaries, mainly because

spatial and temporal locality of objects are not the same over time. Let’s assume the

spatio-temporal query in the dotted square ”find objects in a certain spatial region

during a specific month” in Figures 3(a), and 3(b). SpatialHadoop needs to access all

partitions overlapped with query region, and hence SpatialHadoop is required to scan

one year of records to get the final answer. In the meantime, ST-Hadoop reports the

query answer by accessing few partitions from its daily level without the need to scan

a huge number of records.

5.1 Concept of Hierarchy

ST-Hadoop imposes a replication of data to support spatio-temporal queries with dif-

ferent granularities. The data replication is reasonable as the storage in ST-Hadoop

cluster is inexpensive, and thus, sacrificing storage to gain more efficient performance

is not a drawback. Updates are not a problem with replication, mainly because ST-

Hadoop extends MapReduce framework that is essentially designed for batch pro-

cessing, thereby ST-Hadoop utilizes incremental batch accommodation for new up-

dates.

The key idea behind the performance gain of ST-Hadoop is its ability to load the

data in Hadoop Distributed File System (HDFS) in a way that mimics spatio-temporal

index structures. To support all spatio-temporal operations including more sophisti-
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Fig. 4 Indexing in ST-Hadoop

cated queries over time, ST-Hadoop replicates spatio-temporal data into a Temporal

Hierarchy Index. Figures 3(b) and 3(c) depict two levels of days and months in ST-

Hadoop index structure. The same data is replicated on both levels, but with different

spatio-temporal granularities. For example, a spatio-temporal query asks for objects

in one month could be reported from any level in ST-Hadoop index. However, rather

than hitting 30 days’ partitions from the daily-level, it will be much faster to access

less number of partitions by obtaining the answer from one month in the monthly-

level.

A system parameter can be tuned by ST-Hadoop administrator to choose the num-

ber of levels in the Temporal Hierarchy index. By default, ST-Hadoop set its index

structure to four levels of days, weeks, months and years granularities. However,

ST-Hadoop users can easily change the granularity of any level. For example, the fol-

lowing code loads taxi trajectory dataset from ”NYC” file using one-hour granularity,

Where the Level and Granularity are two parameters that indicate which level

and the desired granularity, respectively.

trajectory = LOAD ’NYC’ as

(id:int, STPoint(loc:point, time:timestamp))

Level:1 Granularity:1-hour;

5.2 Index Construction

Figure 4 illustrates the indexing construction in ST-Hadoop, which involves two scan-

ning processes. The first process starts by scanning input files to get a random sample,

and this is essential because the size of input files is beyond memory capacity, and

thus, ST-Hadoop obtains a set of records to a sample that can fit in memory. Next, ST-

Hadoop processes the sample n times, where n is the number of levels in ST-Hadoop

index structure. The temporal slicing in each level splits the sample into m number of

slice (e.g., slice1.m). ST-Hadoop finds the spatio-temporal boundaries by applying a
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spatial indexing on each temporal slice individually. As a result, outputs from tempo-

ral slicing and spatial indexing collectively represent the spatio-temporal boundaries

of ST-Hadoop index structure. These boundaries will be stored as meta-data on the

master node to guide the next process. The second scanning process physically as-

signs data records in the input files with its overlapping spatio-temporal boundaries.

Note that each record in the dataset will be assigned n times, according to the number

of levels.

ST-Hadoop index consists of two-layer indexing of a temporal and spatial. The

conceptual visualization of the index is shown in the right of Figure 4, where lines

signify how the temporal index divided the sample into a set of disjoint time intervals,

and triangles symbolize the spatial indexing. This two-layer indexing is replicated in

all levels, where in each level the sample is partitioned using different granularity.

ST-Hadoop trade-off storage to achieve more efficient performance through its index

replication. In general, the index creation of a single level in the Temporal Hierar-

chy goes through four consecutive phases, namely sampling, temporal slicing, spatial

indexing, and physical writing.

5.3 Phase I: Sampling

The objective of this phase is to approximate the spatial distribution of objects and

how that distribution evolves over time, to ensure the quality of indexing; and thus,

enhance the query performance. This phase is necessary, mainly because the input

files are too large to fit in memory. ST-Hadoop employs a map-reduce job to effi-

ciently read a sample through scanning all data records. We fit the sample into an in-

memory simple data structure of a length (L), that is an equal to the number of HDFS

blocks, which can be directly calculated from the equation L = (Z/B), where Z is

the total size of input files, and B is the HDFS block capacity (e.g., 64MB). The size

of the random sample is set to a default ratio of 1% of input files, with a maximum size

that fits in the memory of the master node. This simple data structure represented as a

collection of elements; each element consist of a time instance and a space sampling

that describe the time interval and the spatial distribution of spatio-temporal objects,

respectively. Once the sample is scanned, we sort the sample elements in chronologi-

cal order to their time instance, and thus the sample approximates the spatio-temporal

distribution of input files.

5.4 Phase II: Temporal Slicing

In this phase ST-Hadoop determines the temporal boundaries by slicing the in-

memory sample into multiple time intervals, to efficiently support a fast random

access to a sequence of objects bounded by the same time interval. ST-Hadoop em-

ploys two temporal slicing techniques, where each manipulates the sample according

to specific slicing characteristics: (1) Time-partition, slices the sample into multiple

splits that are uniformly on their time intervals, and (2) Data-partition where the

sample is sliced to the degree that all sub-splits are uniformly in their data size. The
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output of this phase finds the temporal boundary of each split, that collectively cover

the whole time domain.

The rational reason behind ST-Hadoop two temporal slicing techniques is that for

some spatio-temporal archive the data spans a long time-interval such as decades,

but their size is moderated compared to other archives that are daily collect terabytes

or petabytes of spatio-temporal records. ST-Hadoop proposed the two techniques to

slice the time dimension of input files based on either time-partition or data-partition,

to improve the indexing quality, and thus gain efficient query performance. The time-

partition slicing technique serves best in a situation where data records are uniformly

distributed in time. Meanwhile, data-partition slicing best suited with data that are

sparse in their time dimension.

• Data-partition Slicing. The goal of this approach is to slice the sample to the de-

gree that all sub-splits are equally in their size. Figure 5 depicts the key concept of

this slicing technique, such that a slice1 and slicen are equally in size, while

they differ in their interval coverage. In particular, the temporal boundary of slice1

spans more time interval than slicen. For example, consider 128MB as the size of

HDFS block and input files of 1 TB. Typically, the data will be loaded into 8 thousand

blocks. To load these blocks into ten equally balanced slices, ST-Hadoop first reads

a sample, then sort the sample, and apply Data-partition technique that slices

data into multiple splits. Each split contains around 800 blocks, which hold roughly a

100 GB of spatio-temporal records. There might be a small variance in size between

slices, which is expectable. Similarly, another level in ST-Hadoop temporal hierarchy

index could loads the 1 TB into 20 equally balanced slices, where each slice contains

around 400 HDFS blocks. ST-Hadoop users are allowed to specify the granularity of

data slicing by tuning α parameter. By default four ratios of α is set to 1%, 10%,

25%, and 50% that create the four levels in ST-Hadoop index structure.

• Time-partition Slicing. The ultimate goal of this approach is to slices the input

files into multiple HDFS chunks with a specified interval. Figure 6 shows the general

idea, where ST-Hadoop splits the input files into an interval of one-month granularity.

While the time interval of the slices is fixed, the size of data within slices might vary.

For example, as shown in Figure 6 Jan slice has more HDFS blocks than April.

ST-Hadoop users are allowed to specify the granularity of this slicing technique,

which specified the time boundaries of all splits. By default, ST-Hadoop finer gran-

ularity level is set to one-day. Since the granularity of the slicing is known, then a

straightforward solution is to find the minimum and maximum time instance of the

sample, and then based on the intervals between the both times ST-Hadoop hashes

elements in the sample to the desired granularity. The number of slices generated by

the time-partition technique will highly depend on the intervals between the mini-

mum and the maximum times obtained from the sample. By default, ST-Hadoop set

its index structure to four levels of days, weeks, months and years granularities.

5.5 Phase III: Spatial Indexing

This phase ST-Hadoop determines the spatial boundaries of the data records within

each temporal slice. ST-Hadoop spatially index each temporal slice independently;
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such decision handles a case where there is a significant disparity in the spatial distri-

bution between slices, and also to preserve the spatial locality of data records. Using

the same sample from the previous phase, ST-Hadoop takes the advantages of apply-

ing different types of spatial bulk loading techniques in HDFS that are already imple-

mented in SpatialHadoop such as Grid, R-tree, Quad-tree, and Kd-tree. The output of

this phase is the spatio-temporal boundaries of each temporal slice. These boundaries

stored as a meta-data in a file on the master node of ST-Hadoop cluster. Each entry in

the meta-data represents a partition, such as < id,MBR, interval, level >. Where

id is a unique identifier number of a partition on the HDFS, MBR is the spatial min-

imum boundary rectangle, interval is the time boundary, and the level is the number

that indicates which level in ST-Hadoop temporal hierarchy index.

5.6 Phase IV: Physical Writing

Given the spatio-temporal boundaries that represent all HDFS partitions, we ini-

tiate a map-reduce job that scans through the input files and physically partitions

HDFS block, by assign data records to overlapping partitions according to the spatio-

temporal boundaries in the meta-data stored on the master node of ST-Hadoop cluster.

For each record r assigned to a partition p, the map function writes an intermediate

pair 〈p, r〉 Such pairs are then grouped by p and sent to the reduce function to write

the physical partition to the HDFS. Note that for a record r will be assigned n times,

depends on the number of levels in ST-Hadoop index.

6 Operations Layer

The combination of the spatiotemporally load balancing with the temporal hierarchy

index structure gives the core of ST-Hadoop, that enables the possibility of efficient

and practical realization of spatio-temporal operations, and hence provides orders of

magnitude better performance over Hadoop and SpatialHadoop. In this section, we

discuss several fundamental spatio-temporal operations, namely, range (Section 6.1),

kNN (Section 6.2), and join (Sections 6.3) as case studies of how to exploit the spatio-

temporal indexing in ST-Hadoop. Other operations can also be realized following

similar approaches.
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6.1 Spatio-temporal Range Query

A range query is specified by two predicates of a spatial area and a temporal inter-

val, A and T , respectively. The query finds a set of records R that overlap with both

a region A and a time interval T , such as ”finding geotagged news in California

area during the last three months” . ST-Hadoop employs its spatio-temporal index

described in Section 5 to provide an efficient algorithm that runs in three steps, tem-

poral filtering, spatial search, and spatio-temporal refinement, described below.

In the temporal filtering step, the hierarchy index is examined to select a subset

of partitions that cover the temporal interval T . The main challenge in this step is that

the partitions in each granularity cover the whole time and space, which means the

query can be answered from any level individually or we can mix and match partitions

from different level to cover the query interval T . Depending on which granularities

are used to cover T , there is a tradeoff between the number of matched partitions

and the amount of processing needed to process each partition. To decide whether a

partition P is selected or not, ST-Hadoop computes the coverage ratio along with the

number of partitions needed to be processed and then selects the granularity based on

the minimum number of partitions.

In the spatial search step, Once the temporal partitions are selected, the spatial

search step applies the spatial range query against each matched partition to select

records that spatially match the query range A. Keep in mind that each partition

is spatiotemporally indexed which makes queries run very efficiently. Since these

partitions are indexed independently, they can all be processed simultaneously across

computation nodes in ST-Hadoop, and thus maximizes the computing utilization of

the machines.

Finally in the spatio-temporal refinement step, compares individual records re-

turned by the spatial search step against the query interval T , to select the exact

matching records. This step is required as some of the selected temporal partitions

might partially overlap the query interval T and they need to be refined to remove

records that are outside T . Similarly, there is a chance that selected partitions might

partially overlap with the query area A, and thus records outside the A need to be

excluded from the final answer.

6.2 Spatio-temporal kNN Query

The spatio-temporal nearest neighbor query takes a spatio-temporal point Q, a

spatio-temporal predicates θ, a spatio-temporal ranking function Fα, and an integer

k as an input, and returns the k spatiotemporally closest points to Q such that:

(1) The k points are within the temporal distance θtime. (2) The k points are not

far from the spatial distance θspace. (3) The top k points are ranked according to

the spatio-temporal ranking function Fα that combines the spatial proximity and the

temporal closeness of p ∈ P to the query point Q. For example, a crime analyst

might be interested to find the relationship between crimes, which can be described

as ”find the top 10 closest crimes to a given crime Q in downtown that took place on

the 2nd during last year”. With the spatio-temporal information of the query point
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Q, ST-Hadoop adds a spatio-temporal ranking function Fα to the kNN query. The

ranking function allows ST-Hadoop to compromise between spatial proximity and

temporal closeness of its top-k points to the the query point.

Definition Spatio-temporal Ranking Function.

The ranking function Fα indicates whether a user query leans toward spatial prox-

imity or temporal concurrency. If α = 1, then the user cares about spatial closeness,

i.e., the top-k results will be spatially closest to the query point. If α = 0, then the

user cares about temporal recency, i.e., the top-k results will be temporally recent to

query point. Meanwhile, if α value is between zero and one, then the user cares about

spatio-temporal proximity. The spatio-temporal proximity can be computed with the

following mathematical equation.

Fα(Q, p) = α× SpatialDist(Q.loction, p.location)
+ (1− α)× TemporalDist(Q.timestamp, p.timestamp)

The spatio-temporal ranking function Fα dependents on both SpatialDist and the

TemporalDist functions, which they are normalized and monotonic. Each has a value

range from zero to one. The SpatialDist is the Euclidean distance between two points’

locations divided by the maximum spatial distance θspace, where θspace is the dis-

tance from a query point Q to the kth furthest location. Meanwhile, the TemporalDist

is that ratio of delta times of Q and p to the total temporal interval θtime. The tempo-

ral interval θtime is the time distance from the query point Q to the kth furthest point

in time.

Figure 7 gives a landscape of all possible ways to process the kNN operation

in ST-Hadoop. Without loss of generality, let's suppose that the ST-Hadoop indexes

input files into intervals of days, and a user is interested in discovering the top k points

to a given query point Q during the last year. As shown in the top of the Figure, One

extreme when α is equal to one, which indicates that the user cares about spatial

proximity in their k result. Hence, all partitions overlap with query point Q needs to

be processed from the last year. On the opposite side if α is equal to zero, then the user

cares about temporal closeness in their k result. This means that at most we are going

to process partitions at the same time interval. Between those two extremes reside

the challenge, such that to what extent we need to process partitions from other time

intervals to find the top-k points. ST-Hadoop applies a simple and efficient technique

that capable of pruning the search space to process only n number of partitions, which

guarantee that those partitions will have the final k answers.

In Hadoop, a kNN query scans entire points in input files, calculates their spatio-

temporal similarity distance to the query point Q, and provides the top-k to Q [36,

34]. Meanwhile, in spatially indexed HDFS's [38,19,33,6], only spatial kNN is sup-

ported. This means that the kNN operation on a spatially indexed HDFS also needs to

scan all points in input files to search for the temporal closeness. ST-Hadoop consid-

ers both space and time; and thus, in its spatio-temporal kNN query exploits simple

pruning techniques to achieve orders of magnitude better performance. ST-Hadoop

kNN algorithm runs in three phases, kNN initial answer, correctness check, and kNN

refinement.
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Fig. 7 Landscape of spatio-temporal kNN operation

In the kNN initial answer phase, we come up with an initial answer of the k
closest points to Q within a single partition in the HDFS. ST-Hadoop first locates

the partition that includes Q, by feeding the SpatioTmeporalFileSplitter with a filter

function that selects only the overlapping partition from the temporal interval. ST-

Hadoop exploits a SpatioTmeporalRecordReader to reads the selected partition, then

executes a traditional kNN algorithm to produce the initial k answers. The function

Fα computes the spatio-temporal distance between any points and the query point Q.

In the correctness check phase, we check if the initial k answer can be consid-

ered final. The main idea of this phase is to draw a test Cylinder centered at Q with

radius r equal to the spatial distance from Q to its kth furthest neighbor in space. The

height l of the cylinder is equal to the temporal distance from Q to its kth furthest

neighbor in time. The radius and the height of the cylinder change only if there is

potential point dominate the score of the ranking functions of the furthest kth point

in the initial results in any dimension, i.e., space or time. If the cylinder does not over-

lap with any partitions spatially or temporally, then we terminate the process, and the

initial answer is considered final. Otherwise, we proceed to the next phase.

Three cases encounter when we draw the test cylinder to check for correctness in

this phase as follows.

• Case 1 (α = 1): If a user specifies α with 1, then the user cares more about spatial

proximity than temporal. This means that we need to check the correctness of all

time intervals. As shown in the top of Figure 7, the query point Q overlap with all

year partitions. If input files only indexed in one level, then the cylinder height is

equal to the whole θtime. On the other hand, if the input files indexed into a temporal

hierarchy, then rather than accessing a huge number of partitions, ST-Hadoop feeds

the temporal query predicate θtime to its query optimizer. The query optimizer will

generate an execution plan that selects the overlap partition with Q from a lower

granularity level, i.e., yearly level. Next, we execute a traditional kNN algorithm to

produce new initial k answers again. The new height of the cylinder is going to be

equal to zero. Next, we draw a cylinder centered at Q with a radius equal to the

furthest kth neighbor. If the cylinder does not overlap with any partition other than
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Fig. 8 Correctness check Final Answer

Q, then we terminate, and the new initial answer considered final. Otherwise, we

processed to the next phase.

• Case 2 (α = 0): If a user specifies α with zero, then the user cares more about

temporal proximity. This means that we need to check the correctness from the same

time interval. First, we draw a cylinder centered at Q with a radius equal to the spa-

tial distance from Q to its kth furthest neighbor, obtained from the initial answer. The

height of the cylinder is equal to zero. If the cylinder does not overlap with any par-

tition other than Q, then we terminate the process, and the initial answer considered

final. Otherwise, we processed to the next phase.

Figure 8 gives an example of a kNN query for point Q with a k = 3 and α is

equal to zero. The shaded partitions are the one considered in the processing. The

dotted test cylinder has a height equal to zero, composed from the initial answer p1,
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Fig. 9 Correctness Check when 0 ≤ α ≤ 1

p5, p16. The cylinder does not overlap with any other partitions than Q; thus, the

initial answer is considered final.

• Case 3 (0 ≤ α ≤ 1): If a user specifies any α value between zero and one, then

this means that the user cares about the spatio-temporal proximity. The main idea is

to gradually draw the cylinder and make sure that the kth furthest neighbor point is

not dominated by any other points in both dimensions, i.e., space and time. A point

dominates the kth point if it is as good or better in ranking score, and better at least

in one dimension of either spatial or temporal.

Figure 9 illustrates the idea of test cylinder. The query point Q initially overlap

with a single time interval, e.g., day 1. We check if some points either in the next

or previous interval can dominate the score of the kth furthest neighbor from the

same initial interval, e.g., day 1. If a dominance point exists, then we modify the

cylinder height and radius accordingly in the next interval. Notice that the radius of

the cylinder in next time interval is getting smaller, this is because we gradually draw

the test cylinder. We continue this process until we reach a time interval that has no

dominance point that can dominate the kth furthest point.

The cautiously drawing of the test cylinder algorithm has two consecutive steps

as follows.

Step I: In this step, we check if there is a point from a different partition(s) exist

within the same temporal interval, such that it can dominate the ranking score

of the initial furthest kth neighbor. In other words, in this step, we determine

the radius of the cylinder within the same temporal interval. First, Starting from

the partition that overlap with Q from the same time interval, we draw the circle

of the cylinder centered at Q with a radius equal to the spatial distance of the

kth furthest neighbor. If partitions overlap with the circle's MBR, then we check

if the nearest point from the overlapped partition(s) can dominate the score of
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the initial furthest kth. If a dominance exists, then we consider processing this

partition, update our furthest kth in the initial answer with the dominating point,

and subsequently, we proceed to the next step.

Step II: In this step, we modify the height of the test cylinder by checking if there

is a point from the next or the previous temporal interval can dominate the furthest

kth neighbor. For the sake of simplicity, let's consider the next temporal interval in

our discussion. However, the presented technique is operated to examine interval

in both directions. First, we find the partition that overlaps with Q from the next

time interval. Then, we check if the temporal distance along with the minimum

spatial distance between Q and the new partition can dominate the furthest kth.

If the score beats the kth, then a dominance might exist in that partition. Thus,

we consider processing this partition by modifying the height of the cylinder.

Recursively we repeat the processing of the two steps with every new interval

appended to the cylinder height until no further dominance exist. Finally, if no

dominance point exists, then we can proceed to the next phase.

Figure 9 gives an example of a kNN query that finds the top-4 points for point Q

with α value equal to 0.2 over the last year. ST-Hadoop starts from the Q partition

on day 1. First, we find the top-4 neighbor from day 1, and then we insert the score

of the furthest 4th neighbor from day 1 to a priority queue, e.g., p16. Iterate over the

other overlap partitions from next temporal interval, e.g., days 2. In each iteration

ST-Hadoop checks if the ranking score of the minimum distance point of the new

partition can beat the ranking score of the p16. If it beats, then this new partition is

considered, and we modify the cylinder height and radius respectively. As depicted in

Figure 9, p6 in day 2 dominates p16. We repeat this process until no dominance point

can be found in the next temporal interval. As shown in the example after the third

day, we do not need to modify the height of the cylinder, since there is no dominance

point exist any further. Henceforward, other partitions will be ignored and no further

computation required, and we can proceed to the next phase.

In the kNN refinement phase, We check if there are points in the overlap par-

titions might contribute to the final answer. If α is equal to zero or one, then we

run a spatial range query to get all points inside the MBR of the test circle, as the

cylinder height is equal to zero. Meanwhile, if 0 ≤ α ≤ 1, then we run we run a

spatio-temporal range query to get all points inside the MBR of the test cylinder. The

cylinder radius and height are obtained from the previous phase. Finally, we scan over

the range query result and process it with the traditional kNN algorithm to find the

final answer.

Figure 10 and 9 gives two examples of refinement phase. The shaded partitions

are the ones that are considered in the range query. In Figure 10, the circle of the

cylinder intersects with the three partitions from the same temporal interval. In that

case, the height of the cylinder is equal to zero. In Figure 9 we illustrate the test

cylinder with a height equal to 3 temporal intervals. Similarly, the shaded partitions

are the only one to be considered in the range query. For each time interval, a circle

has a different radius, which collectively forms the test cylinder. Once we get the

results, we apply the traditional kNN algorithm to find the final top-4 answers, i.e.,

{p5, p3, p6, p1} in the refinement phase.
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Fig. 10 Refinement Final Answer

6.3 Spatio-temporal Join

Given two indexed dataset R and S of spatio-temporal records, and a spatio-temporal

predicate θ. The join operation retrieves all pairs of records 〈r, s〉 that are similar to

each other based on θ. For example, one might need to understand the relationship

between the birds death and the existence of humans around them, which can be

described as ”find every pairs from bird and human trajectories that are close to

each other within a distance of 1 mile during the last week”. The join algorithm runs

in two steps as shown in Figure 11, hash and join.

In the hashing step, the map function scans the two input files and hashes each

record to candidate buckets. The buckets are defined by partitioning the spatio-

temporal space using the two-layer indexing of temporal and spatial, respectively.
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Fig. 11 Spatio-temporal Join

The granularity of the partitioning controls the tradeoff between partitioning over-

head and load balance, where a more granular-partitioning increases the replication

overhead, but improves the load balance due to the huge number of partitions, while a

less granular-partitioning minimizes the replication overhead, but can result in a huge

imbalance especially with highly skewed data. The hash function assigns each point

in the left dataset, r ∈ R, to all buckets within an Euclidean distance d and temporal

distance t, and assigns each point in the right dataset, s ∈ S, to the one bucket which

encloses the point s. This ensures that a pair of matching records 〈r, s〉 are assigned

to at least one common bucket. Replication of only one dataset (R) along with the

use of single assignment, ensure that the answer contains no replicas.

In the joining step, each bucket is assigned to one reducer that performs a tradi-

tional in-memory spatio-temporal join of the two assigned sets of records from R and

S. We use the plane-sweep algorithm which can be generalized to multidimensional

space. The set S is not replicated, as each pair is generated by exactly one reducer,

and thus no duplicate avoidance step is necessary.

7 Query Optimization

Figure 12 illustrates the conceptual visualization of ST-Hadoop index, where lines

signify how the temporal index divided into a set of disjoint time intervals, e.g.,

months, weeks, or days. Triangles symbolize the spatial indexing, e.g., R-tree. ST-

Hadoop stores its index information as a meta-data on the master node. The meta-

data of the ST-Hadoop index provides a rich statistics about the spatial and temporal

locality of partitions in the HDFS. Each record of the meta-data represents a partition,

which contains information about the minimum boundary rectangle, temporal inter-

val, temporal granularity (i.e., level), the number of data records within the HDFS

block, and a unique identifier that acts as an entry pointer to access the partition

block. Data records are replicated and spatiotemporally partitioned in each level.
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Fig. 12 ST-Hadoop spatio-temporal meta-data index

Partitions in each level of ST-Hadoop index cover the whole time and space,

which means a query can be answered from any level individually or we can mix

and match partitions from different levels to cover the query predicates. To decide

which partitions should be selected and from which levels, highly depends on the

selectivity of the query predicates. Depending on which granularity is used to get the

result, there is a tradeoff between the number of partitions contains the query results

and the amount of processing needed to process each partition. The HDFS block size

is tuned in ST-Hadoop configuration files, which means partitions block size are the

same across all computation nodes. Therefore, for any given query the bottleneck that

hits the query performance is the number of partitions that contain the query answer.

The primary goal of ST-Hadoop query optimizer is to minimize the number of

partitions that contain the final answer for each of its operation. We implemented in

memory greedy algorithm that recursively iterates over ST-Hadoop meta-data to find

the optimal execution plan. The algorithm runs in a top-down approach that starts

from the lowermost granularity (e.g., monthly level) to the highest one (e.g., daily

level). In each iteration, we examine the precise number of partitions N that contains

the final answer for the given spatio-temporal query predicates. The algorithm reports

the global optimal execution plan, if the next granularity has a higher number of

partitions, or it reaches the highest level. For example, consider a query that asks

about 22 days of data records in a particular area. First, ST-Hadoop calculates the

number overlap partitions from the monthly level, and then compares it with the

next level from its temporal hierarchy index (e.g., week). ST-Hadoop query optimizer

recursively computes and compares the number of partitions until the next explored

level has more partitions from the current one. If the highest granularity is reached

and has a fewer number of partitions, then all partitions overlap with query predicates

will be selected.

ST-Hadoop previous query optimizer was based on heuristic [4]. An algorithm

applied to computes the coverage ratio r, that defined as the ratio of the time interval

of a partition that overlaps with spatio-temporal query predicates. A partition was

selected only if its coverage ratio is above a specific threshold M. The algorithm run

in a top-down approach that starts with the top level and selects partitions that cover
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Twitter Data Size Num-Records Time window

Large 10TB > 1 Billion > 3 years

Average-Large 6.7TB 692 Million 1 years

Medium-Large 3TB 152 Million 9 months

Moderate-Large (1TB) 115 Million 3 months

(a) Datasets

Parameter Values (default)

HDFS block capacity (B) 32, 64, (128), 256 MB

Cluster size (N ) 5, 10, 15, 20, (23)

Selection ratio (ρ) (0.01), 0.02, 0.05, 0.1, 0.2, 0.5, 1.0

Data-partition slicing ratio(α) 0.01, 0.02, 0.025, 0.05, (0.1), 1

Time-partition slicing granularity(σ) (days), weeks, months, years

Spatio-temporal proximity (α) 0,0.2, (0.5), 0.6, 0.8, 1.0

(b) Parameters

Fig. 13 Experimental settings and Dataset

the temporal query intervalT , If the query interval T is not covered at that granularity,

then the algorithm continues to the next level. If the bottom level is reached, then

all partitions overlap with T will be selected. Meanwhile, in our new ST-Hadoop

algorithm we employ a greedy algorithm that finds the minimum number of partitions

need to be processed.

8 experiments

This section provides an extensive experimental performance study of ST-Hadoop

compared to SpatialHadoop and Hadoop. We decided to compare with this two

frameworks and not other spatio-temporal DBMSs for two reasons. First, as our con-

tributions are all about spatio-temporal data support in Hadoop. Second, the different

architectures of spatio-temporal DBMSs have great influence on their respective per-

formance, which is out of the scope of this paper. Interested readers can refer to a

previous study [25] which has been established to compare different large-scale data

analysis architectures. In other words, ST-Hadoop is targeted for Hadoop users who

would like to process large-scale spatio-temporal data but are not satisfied with its

performance. The experiments are designed to show the effect of ST-Hadoop index-

ing and the overhead imposed by its new features compared to SpatialHadoop. How-

ever, ST-Hadoop achieves two orders of magnitude improvement over SpatialHadoop

and Hadoop.

Experimental Settings. All experiments are conducted on a dedicated internal clus-

ter of 24 nodes. Each has 64GB memory, 2TB storage, and Intel(R) Xeon(R) CPU

3GHz of 8 core processor. We use Hadoop 2.7.2 running on Java 1.7 and Ubuntu

14.04.5 LTS. Table 13(b) summarizes the configuration parameters used in our ex-

periments. Default parameters (in parentheses) are used unless mentioned.

Datasets. To test the performance of ST-Hadoop we use the Twitter archived

dataset [30]. The dataset collected using the public Twitter API for more than three

years, which contains over 1 Billion spatio-temporal records with a total size of 10TB.
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To scale out time in our experiments we divided the dataset into different time inter-

vals and sizes, respectively as shown in Table 13(a). The default size used is 1TB

which is big enough for our extensive experiments unless mentioned.

In our experiments, we compare the performance of a ST-Hadoop spatio-temporal

range and join query proposed in Section 6 to their spatial-temporal implementations

on-top of SpatialHadoop and Hadoop. For range query, we use system throughput as

the performance metric, which indicates the number of MapReduce jobs finished per

minute. To calculate the throughput, a batch of 20 queries is submitted to the system,

and the throughput is calculated by dividing 20 by the total time of all queries. The

20 queries are randomly selected with a spatial area ratio of 0.001% and a temporal

window of 24 hours unless stated. This experimental design ensures that all machines

get busy and the cluster stays fully utilized. For spatio-temporal join, we use the pro-

cessing time of one query as the performance metric as one query is usually enough to

keep all machines busy. The experimental results for range, kNN, and join queries are

reported in Sections 8.2, 8.3 , and 8.4, respectively. Meanwhile, Section 8.5 evaluates

our query optimizer, and Section 8.1 analyzes ST-Hadoop indexing.

8.1 Index Construction

Figure 14 gives the total time for building the spatio-temporal index in ST-Hadoop.

This is a one time job done for input files. In general, the figure shows excellent scal-

ability of the index creation algorithm, where it builds its index using data-partition
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slicing for a 1TB file with more than 115 Million records in less than 15 minutes.

The data-partition technique turns out to be the fastest as it contains fewer slices than

time-partition. Meanwhile, the time-partition technique takes more time, mainly be-

cause the number of partitions are increased, and thus increases the time in physical

writing phase.

In Figure 15, we configure the temporal hierarchy indexing in ST-Hadoop

to construct five levels of the two-layer indexing. The temporal indexing uses

Data-partition slicing technique with different slicing ratio α. We evaluate the

indexing time of each level individually. Because the input files are sliced into splits

according to the slicing ratio, which directly effects on the number of partitions. In

general with stretching the slicing ratio, the indexing time decreases, mainly because

the number of partitions will be much less. However, note that in some cases the spa-

tial distribution of the slice might produce more partitions as in shown with 0.25%
ratio.

8.2 Spatiotemporal Range Query

In Figure 16(a), we increase the size of input from 1TB to 10TB, while measuring

the job throughput. ST-Hadoop achieves more than two orders of magnitude higher

throughput, due to the temporal load balancing of its spatio-temporal index. As for

SpatialHadoop, it needs to scan more partitions, which explain why the throughput

of SpatialHadoop decreases with the increase of data records in spatial space. Mean-
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Fig. 16 Spatio-temporal Range Query

 0

 5

 10

 15

 20

1 3 6.7 10

T
h

r
o

u
g

h
p

u
t 

(J
o

b
/m

in
)

Input Size (TB)

SpatialHadoop
ST-Hadoop Hierarchy

Hadoop

(a) Input files

 0

 5

 10

 15

 20

1 10 100 1K 10K 40K

T
h

r
o

u
g

h
p

u
t 

(J
o

b
/m

in
)

k

ST-Hadoop Single Level
ST-Hadoop Hierarchy

Hadoop

(b) k

 0

 5

 10

 15

 20

0 0.2 0.5 0.6 0.8 1
T

h
ro

u
g

h
p

u
t 

(J
o

b
/m

in
)

Spatio-temporal proximity α

ST-Hadoop Single Level
ST-Hadoop Hierarchy

Hadoop

(c) varying (α) of Ranking Function

Fig. 17 Spatio-temporal K-Nearest-Neighbor Query

while, ST-Hadoop throughput remains stable as it processes only partition(s) that in-

tersect with both space and time. Note that it is always the case that Hadoop needs to

scan all HDFS blocks, which gives the worst throughput compared to SpatialHadoop

and ST-Hadoop.

Figure 16(b) shows the effect of configuring the HDFS block size on the job

throughput. ST-Hadoop manages to keep its performance within orders of magnitude

higher throughput even with different block sizes. Extensive experiments are shown

in Figure 16(c), analyzed how slicing ratio (α) can affect the performance of range

queries. ST-Hadoop keeps its higher throughput around the default HDFS block size,

as it maintains the load balance of data records in its two-layer indexing. As expected

expanding the block size from its default value will reduce the performance on Spa-

tialHadoop and ST-Hadoop, mainly because blocks will carry more data records.

8.3 K-Nearest-Neighbor Queries (kNN)

Figures 17 give the performance of kNN query processing on Hadoop [36] and ST-

Hadoop for 10 TB of twitter dataset. In experiments, 20 query locations are set at

random points (i.e., random points in both date and time) sampled from the input file,

α is set to 0.4, the number of k is set to 100. Unless otherwise mentioned.

Figure 17(a) measures system throughput when increasing the input size from

1 TB to 10 TB. ST-Hadoop has one to two orders of magnitude higher throughput.

Hadoop and SpatialHadoop performances decrease dramatically as they need to pro-
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cess the whole file while ST-Hadoop maintains its performance as it processes one

partition regardless of the file size. Since SpatialHadoop is not aware of the tempo-

ral locality of the data, it needs to process multiple partitions to finds the k nearest

neighbor in a specific day, and in a worst case it might end up processing all parti-

tions. Hence, ST-Hadoop keeps its speedup at two orders of magnitude.

Figure 17(b) gives the effect of increasing k from 1 to 40K on 10 TB dataset.

ST-Hadoop gives an order of magnitude performance with both single level index

and optimized query plan that uses ST-Hadoop hierarchy index. ST-Hadoop achieves

two orders of magnitude performance compared to Hadoop kNN implementation.

ST-Hadoop efficiently handles spatio-temporal kNN operation. However, we notice

that the job throughput decreases when k is more than eight thousand, where more

partitions are required to be processed. ST-Hadoop is consistently better than Hadoop.

While the performance with single level index tends to decrease with the increased

number of the nearest neighbor k. In the meantime, the optimized query that uses the

hierarchy index remains stable for a higher number of neighbors. However, at some

point, it will decrease. This is expected as the number of selected partitions increase

with the increased of the k number.

In Figure 17(c), shows how the job throughput affected by the value of α in the

ranking function. The query point Q is fixed at random location on the first day of

a month. The increase of α means that ST-Hadoop might need to process several

partitions from different days and also nearby partitions within the same days to find

the nearest neighbor. As theα value increases, the performance of ST-Hadoop stays at

two orders of magnitude higher than Hadoop. Without having ST-Hadoop hierarchy

index, the performance slightly decrease. This is expected as query cares more about

spatial proximity, and thus, 30 partitions will need to be processed. The reason for the

steady throughput by ST-Hadoop goes to the execution plan supplied by ST-Hadoop

query optimizer. The query optimizer selects a single partition that overlap with the

query point Q, which best fit to cover the whole temporal range. When α = 0 the

query optimizer overlaps Q with a single partition from the highest granularity (e.g,

daily level). If α = 1, then the query optimizer selects a single partition from a

lower granularity level(e.g., month). Meanwhile, if α is in between that two extremes,

then the query optimizer selects a single partition that either extends over the whole

temporal range or partially cover it based on the ranking score of the furthest k.

8.4 Spatiotemporal Join

Figure 18 gives the results of the spatio-temporal join experiments, where we com-

pare our join algorithm for ST-Hadoop with MapReduce implementation of the spa-

tial hash join algorithm [17]. Typically, in this join algorithm we perform the fol-

lowing query, ”find every pairs that are close within an Euclidean distance of 1mile
and a temporal distance of 2days”, this join query is executed on both ST-Hadoop

and Hadoop and the response times are compared. The y-axis in the figure represents

the total processing time, while the x-axis represents the join query on numbers of

days×days in ascending order. With the increase of joining number of days, the per-

formance of ST-Hadoops join increases, because it needs to join more indexes from
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Fig. 18 Spatio-temporal Join

the temporal hierarchy. In general, ST-Hadoop gives the best results as ST-Hadoop

index replicates data in several layers, and thus ST-Hadoop significantly decreases

the processing of non-overlapping partitions, as only partitions that overlap with both

space and time are considered in the join algorithm. Meanwhile, the same joining

algorithm without using ST-Hadoop index gives the worst performance for joining

spatio-temporal data, mainly because the algorithm takes into its consideration all

data records from one dataset. However, ST-Hadoop only joins the indexes that are

within the temporal range, which significantly outperforms the join algorithm with

double to triple performance.

8.5 query optimizer

Experiments in Figure 19 examines the performance of the temporal hierarchy index

in ST-Hadoop using both slicing techniques. We evaluate different granularities of

time-partition slicing (e.g., daily, weekly, and monthly) with various data-partition

slicing ratio. In these two figures, we fix the spatial query range and increase the

temporal range from 1 day to 31 days, while measuring the total running time. As

shown in the Figures 19(a) and 19(b), ST-Hadoop utilizes its temporal hierarchy index

to achieve the best performance as it mixes and matches the partitions from different

levels to minimize the running time, as described in Section 7. ST-Hadoop provides

good performance for both small and large query intervals as it selects partitions from

any level. When the query interval is very narrow, it uses only the lowest level (e.g.,
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daily level), but as the query interval expand it starts to process the above level. The

value of the parameterM controls when it starts to process the next level. At M = 0,

it always selects the up level, e.g., monthly. If M increases, it starts to match with

lower levels in the hierarchy index to achieve better performance. At the extreme

value of M = 1, the algorithm only matches partitions that are completely contained

in the query interval, e.g., at 18 days it matches two weeks and four days while at

30 days it matches the whole month. The best choice of M value in this experiment

is M = 0.4 which means it only selects partitions that are at least 40% covered by

the temporal query interval.

In Figure 20 we study the effect of the spatio-temporal query range (σ) on the

choice of M. To measure the quality of M, we define the best running time for a

query Q as the minimum of all running times for all values of M ∈ [0, 1]. Then,

we determine the quality of a specific value of M on a query workload as the mean

squared error (MSE) between the running time at this value ofM and the best running

time. This means, if a value of M always provides the best value, it will yield a

quality measure of zero. As this value increases, it indicates a poor quality as the

running times deviates from the best running time. In Figure 20(a), We repeat the

experiment with three values of spatial query ranges σ ∈ {1E − 6, 1E − 4, 0.1}. As

shown in the figure, M = 0.4 provides the best performance for all the experimented

spatial ranges. This is expected as M is only used to select temporal partitions while

the spatial range (σ) is used to perform the spatial query inside each of the selected

partitions. Figure 20(b), shows the quality measures with a workload of 71 queries

with time intervals that range from 1 day to 421 days. This experiment also provides

a very similar result where the best choice value of M is around 0.4.

In Figure 21 we evaluate ST-Hadoop greedy algorithm implemented in the new

query optimizer with the heuristic approach of M, on both slicing techniques sup-

ported in ST-Hadoop. Certainly, the best choice of M is at least as far ahead as the

optimal, but it is not optimal. In the heuristic approach, a partition is selected only if

its coverage ratio is above a specific threshold M, which is around 0.4. Meanwhile,

in our new ST-Hadoop implementation we compute the exact number of partitions

that need to be processed by employing a greedy algorithm that finds the minimum.

ST-Hadoop employs a top-down approach that starts with the top level and selects



ST-Hadoop: A MapReduce Framework for Spatio-temporal Data xxix

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

M
S

E

σ=1E-6
σ=1E-4

σ=0.1

M

(a) Tuning of M for query intervals from 1 to 30 days

 0

 2

 4

 6

 8

 10

 12

 0  0.1  0.2  0.3  0.4  0.5  0.6

M
S

E

σ=1E-6
σ=1E-4
σ=0.01

M

(b) Tuning of M for query intervals from 1 to 400 days

Fig. 20 The effect of the spatio-temporal query ranges on the best value of M

 0

 5

 10

 15

 20

 25

1 4 7 16 25 30

N
u

m
b

e
r 

o
f 

P
a

rt
it

io
n

s

Temporal Interval (Days)

ST-Hadoop optimizer
M=0.4

(a) Selected HDFS blocks in Time-partition Slicing

 0

 5

 10

 15

 20

 25

 5  10  15  20  25  30

N
u

m
b

e
r 

o
f 

P
a

rt
it

io
n

s
 

Temporal Interval (Days)

M = 0.7
STHadoop optimizer

M = 0.4

(b) Selected HDFS blocks in Data-partition Slicing

Fig. 21 ST-Hadoop Greedy query optimizer VS heuristic M

partitions that cover query interval T , If the query interval T is not covered at that

granularity, then the algorithm continues to the next level. ST-Hadoop finds the local

optimal from each granularity until we reach the global optimal, i.e., the minimum

number of partitions that covers query interval.

Figure 21(a), compares the number of selected partitions between M and the

greedy algorithm. The input files indexed and sliced through Time-partition tech-

nique, i.e., daily, weekly, monthly levels. We fix the spatial range query and increase

the temporal range from 1 day to 31 days. In these experiments, we eliminate other

M value, as experimentally we found that the best choice of M value is equal to

(0.4). As shown in the figure, the greedy algorithm always beats M. As expected

the algorithm selects the global optimal, which is the minimal number of partitions

that contain the final answer. In Figure 21(b), we repeated the same experiment with

various data-partition slicing ratio. ST-Hadoop greedy algorithm provides the best

performance for both small and large query intervals as it selects the minimum num-

ber of partitions from any level. When the query interval is very narrow, it uses only

the lowest granularity level. As as the query interval expand query optimizer starts to

process the above level.
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9 Conclusion

In this paper, we introduced ST-Hadoop [27] as a novel system that acknowledges

the fact that space and time play a crucial role in query processing. ST-Hadoop is

an extension of a Hadoop framework that injects spatio-temporal awareness inside

SpatialHadoop layers. The key idea behind the performance gain of ST-Hadoop is its

ability to load the data in Hadoop Distributed File System (HDFS) in a way that mim-

ics spatio-temporal index structures. Hence, incoming spatio-temporal queries can

have minimal data access to retrieve the query answer. ST-Hadoop is shipped with

support for three fundamental spatio-temporal operations, namely, spatio-temporal

range, top-k nearest neighbor, and join queries. However, ST-Hadoop is extensible to

support a myriad of other spatio-temporal operations. We envision that ST-Hadoop

will act as a research vehicle where developers, practitioners, and researchers world-

wide, can either use directly or enrich the system by contributing their operations and

analysis techniques.
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