
ST-Hadoop: A MapReduce Framework for Big
Spatio-temporal Data

Louai Alarabi
PhD Student, University of Minnesota, Minneapolis, MN

louai@cs.umn.edu

1. PROBLEM AND MOTIVATION
The importance of processing spatiotemporal data is growing

with the emerging and popularity of applications that create them

in large-scale datasets. For example, space-telescopes weekly col-

lect around 150 GB [15]. NASA spacecraft projects collect over

4 TB of data every day [21,22]. Medical magnetic resonance imag-

ing (MRI) produce images at a rate of 50 PB per year [7]. New

York City Taxi and Limousine Commission archive over 1.1 Bil-

lion trajectories [24]. Twitter has more than 500+ Million tweets

every day, and 80% of its users are mobile [12, 29]. Facebook col-

lect 3.2+ Billion interactions, and its active mobile users represent

67% [8]. A common characteristics of all collected data is that it

has space and time information.

Domain experts who need to process spatiotemporal data can

either use: (a) General purpose distributed frameworks such as

Hadoop [13] or Spark [26], or (b) Big spatial data systems such

as ESRI tools on Hadoop [6, 30], Parallel-Secondo [19], MD-

HBase [23], Hadoop-GIS [2], GeoTrellis [16], GeoSpark [31], and

SpatialHadoop [4]. The former has been acceptable for typical

analysis tasks as they organizes data as non-indexed heap files.

However, using these systems as is will result in sub-performance

for spatiotemporal applications that need indexing. The latter re-

veal their inefficiency for supporting time-varying of spatial ob-

jects because their indexes are mainly geared toward processing

spatial queries. Executing spatiotemporal queries on either general

purpose frameworks or spatial data systems will require scanning

through irrelevant data that will result in bad performance.

In this paper, we present ST-Hadoop [27] as a novel system that

acknowledges the fact that space and time play a crucial role in

query processing. ST-Hadoop is an extension of a Hadoop frame-

work that injects the spatiotemporal awareness in the code base

of four layers inside SpatialHadoop, namely, language, indexing,

MapReduce, and operations layers. The key point behind the per-

formance gain of ST-Hadoop is the idea of indexing, where data are

temporally loaded and divided across computation nodes.

2. BACKGROUND AND RELATED WORK
MapReduce frameworks, e.g., Hadoop [13], have been used ex-

tensively in different applications that include terabyte sorting [1],

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGMOD’17 Student Research Competition May 14-19 2017, Chicago, IL,
USA

c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4199-8/17/05.

DOI: http://dx.doi.org/10.1145/3055167.3055181

Indexing

MapReduce

Operations

MasterSlaves

Map/Reduce

Tasks

Configured MapReduce Job

Spatio-temporal

Queries

Query

Results

Index Information

Storage/Processing

Nodes

Language

Spatio-temporal

Operations

System AdminCasual UserDeveloper

Config

Files

File Data

System

Parameters

SpatioTemporalFileSplitter

SpatioTemporalRecordReader

Time-slicing

Data-slicing

 Multi-Resolution

ST-RangeQuery, ST-JOIN

ST-Aggregates

 TIME

INTERVAL

Figure 1: ST-Hadoop system architecture

machine learning [11], and graph processing [10, 18, 25]. Cur-

rent efforts to process spatiotemporal big data on MapReduce

environment are either run on-top of a general purpose frame-

work [3,9,14,17,20,28,30], or as an ad-hoc operation using spatial

data systems [5, 6]. The spatial data systems are not well designed

to efficiently process spatiotemporal queries, mainly because their

indexes are equipped to only support spatial queries. All on-top

approaches result in poor performance as the framework internals

are unaware of the temporal locality of the data.

This work describes ST-Hadoop; a full-fledged MapReduce

framework with native support for big spatiotemporal data. ST-

Hadoop is a comprehensive extension to Hadoop that injects spa-

tiotemporal data awareness inside SpatialHadoop layers.

3. APPROACH AND UNIQUENESS
Figure 1 gives the high level architecture of our ST-Hadoop; with

a built-in support for spatiotemporal data types and operations. ST-

Hadoop cluster contains one master node that breaks a map-reduce

job into smaller tasks, carried out by slave nodes. Three types of

users interact with ST-Hadoop: (1) Casual users who access ST-

Hadoop through its language to process their datasets. (2) Develop-

ers, who have a deeper understanding of the system and can imple-

ment new operations, and (3) Administrators, who can tune up the

system through adjusting system parameters in the configuration

files provided with the ST-Hadoop installation. ST-Hadoop adopts

a layered design of four main layers, namely, language, Indexing,

MapReduce, and operations layers, described briefly below:

Language Layer: This layer provides a simple high-level SQL-

like language that supports spatiotemporal data types (i.e., TIME

and INTERVAL) and operations (e.g., OVERLAP, and JOIN).

Indexing Layer: ST-Hadoop employs a two levels index structure

Temporal Slicing

Temporal

Hierarchy Index

Spatial Indexing

Figure 2: Indexing in ST-Hadoop

of global and local indexing. The global index partitions the data

across the computation nodes, while the local index organizes the

data inside each node. Space and time are taken into consideration

inside the two levels index structures.

MapReduce Layer: ST-Hadoop adds two new implementations

to MapReduce layer, namely, SpatioTemporalFileSplitter, and Spa-

tioTemporalRecordReader, which they exploit the global and local

indexes, respectively, for data pruning.

Operations Layer: This layer encapsulates the implementation

of two common spatiotemporal operations, namely, spatiotempo-

ral range query, and spatiotemporal join queries. More operations

can be added to this layer by ST-Hadoop developers.

4. INDEXING
Figure 2 Illustrates the abstract idea of indexing in ST-Hadoop,

which can be described in three consecutive phases:

(1) Temporal slicing. In this phase, we slice the input file into

multiple intervals, to efficiently support a fast random access to a

sequence of objects bounded by the same time interval. ST-Hadoop

employs two slicing techniques:

• Time-Based. This slicing technique slices the data loaded into

the HDFS into multiple splits, that are uniformly on their time

intervals. Figure 3 shows the general idea of this type of slicing,

where ST-Hadoop splits a year of data into the interval of one

month. While the time interval of the slices is fixed, the size of

slices varies according to the time distribution of the data.

• Data-Based. In this technique the data sliced to the degree that

all sub-splits are uniformly in their data size. All slices hold

the same number of data blocks, while their time intervals are

disjointed. Figure 4 depicts the key concept such that a slice1

and slicen are equally in size, but they differs in their interval

coverage.

(2) Spatial Indexing. This phase has two main tasks: (a) Deter-

mining the spatial boundries of each temporal slice, and (b) Phys-

ically partitioning data within a slice spatially across computa-

tion nodes. ST-Hadoop takes the advantages of applying different

types of spatial partitioning techniques already equipped in Spatial-

Hadoop such as Grid, R-tree-like, Quad-tree, and Kd-tree.

(3) Temporal Hierarchy Indexing. For an efficient retrieval of

spatiotemporal objects, ST-Hadoop introduces a temporal hierar-

chy for spatial indexes. This index is organized into multiple lev-

els; each corresponds to specific time resolution. In each level,

the whole dataset is replicated and spatiotemporally partitioned ac-

cording to the resolution of that level. ST-Hadoop sacrifices stor-

age to achieve more efficient performance in supporting both spa-

tiotemporal time point and interval queries. In fact, the temporal

hierarchy of indexing in ST-Hadoop is the key point in its superior

performance over Hadoop or SpatialHadoop.

5. INDEX UPDATE AND MAINTENANCE
This module maintains the Temporal Hierarchy Index on a reg-

ular basis, such as every day, to reflect newly received data on

Size

 (GB)

1

....

Figure 3: Time-Slice

HDFS

Figure 4: Data-Slice

the index. A single map-reduce job is responsible for appending

the incoming data as following. First, it constructs a new indexed

temporal-slice in the highest resolution layer inside the temporal

hierarchy index. Then, we check if the newly created slice would

contribute to the creation of a lower resolution level. If this is not

the case, then it will be carried out for a next maintenance call.

During the maintenance, if any indexed temporal-slices contribute

to the creation of a lower layer, then the data of these slices will

be merged, and a new bigger temporal-slice will be created in the

lower resolution.

6. RESULTS AND CONTRIBUTIONS
The indexing in ST-Hadoop is the key point in its superior perfor-

mance over Hadoop or SpatialHadoop. Extensive experiments con-

ducted on 10 TB of Twitter dataset [29], to show that ST-Hadoop

achieves orders of magnitude higher job throughput. In this pa-

per, we present two case studies of operations that utilize the ST-

Hadoop indexing, namely, spatiotemporal range query and join

queries.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

1 3 6.7 10

T
h

r
o

u
g

h
p

u
t

(J
o

b
/m

in
)

Input Size (TB)

Data-based
Time-based

Non Temporal Index

Figure 5: Range query

 0

 100

 200

 300

 400

 500

2x2 3x3 5x5 30x30 2x2
T

im
e
 (

m
in

)

Number of Days

ST-Hadoop
Non Temporal Index

Figure 6: join

In figure 5, we increase the size of input file from 1 TB to 10 TB,

while measuring the throughput of SpatialHadoop and ST-Hadoop.

The throughput performance metric indicates the number of map-

reduce jobs finished per minute, which was calculated on a batch

of 20 randomly submitted queries that are selected with a spatial

area ratio of 0.001% and a temporal window of 24 hours. For all

file sizes, ST-Hadoop index has more than two orders of magnitude

higher throughput consistently, due to the early pruning employed

by the spatiotemporal index that results in hitting exact partitions

within the given query parameters. Meanwhile, SpatialHadoop

needs to scan all partitions that overlap with the spatial area, its

throughput decreases with the increasing size of the input file.

Figure 6 gives the result of spatiotemporal join experiments,

where we compare our distributed join algorithm for ST-Hadoop

with spatial join implementation [4]. As shown in the figure, the x-

axis represent the join query on a number of days×days in ascend-

ing order.ST-Hadoop significantly decreases the processing time, as

only partitions that overlap with both space and time property are

considered in the distributed join algorithm. Meanwhile, Spatial-

Hadoop distributed join considers all spatially overlapping parti-

tions, which result in very poor performance for joining spatiotem-

poral data. In all cases, distributed join in ST-Hadoop significantly

outperforms SpatialHadoop algorithm with triple performance.

7. REFERENCES
[1] Sort benchmark, July 2016. http://sortbenchmark.org.

[2] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and

J. Saltz. Hadoop-GIS: A High Performance Spatial Data

Warehousing System over MapReduce. In VLDB, 2013.

[3] K. M. Al-Naami, S. E. Seker, and L. Khan. GISQF: An

Efficient Spatial Query Processing System. In CLOUDCOM,

2014.

[4] A. Eldawy and M. F. Mokbel. SpatialHadoop: A MapReduce

Framework for Spatial Data. In ICDE, 2015.

[5] A. Eldawy, M. F. Mokbel, S. Alharthi, A. Alzaidy, K. Tarek,

and S. Ghani. SHAHED: A MapReduce-based System for

Querying and Visualizing Spatio-temporal Satellite Data. In

ICDE, 2015.

[6] GIS Tools for Hadoop, Feb. 2014.

http://esri.github.io/gis-tools-for-hadoop/.

[7] European XFEL: The Data Challenge, Sept. 2012.

http://www.eiroforum.org/activities/scientific_highlights/

201209_XFEL/index.html.

[8] The Top 20 Valuable Facebook Statistics, 2016.

https://zephoria.com/top-15-valuable-facebook-statistics/.

[9] S. Fries, B. Boden, G. Stepien, and T. Seidl. Phidj: Parallel

similarity self-join for high-dimensional vector data with

mapreduce. In ICDE, 2014.

[10] J. Gao, J. Zhou, C. Zhou, and J. X. Yu. Glog: A high level

graph analysis system using mapreduce. In ICDE, 2014.

[11] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald,

V. Sindhwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan.

SystemML: Declarative Machine Learning on MapReduce.

In ICDE, 2011.

[12] 2015. https://blog.gnip.com/tag/geotagged-tweets/.

[13] Apache. Hadoop. http://hadoop.apache.org/.

[14] W. Han, J. Kim, B. S. Lee, Y. Tao, R. Rantzau, and V. Markl.

Cost-based predictive spatiotemporal join. 2009.

[15] Telescope Hubbel site:, 2015. http://hubblesite.org/the_

telescope/hubble_essentials/quick_facts.php.

[16] A. Kini and R. Emanuele. Geotrellis: Adding Geospatial

Capabilities to Spark, 2014. http://spark-summit.org/2014/

talk/geotrellis-adding-geospatial-capabilities-to-spark.

[17] Z. Li, F. Hu, J. L. Schnase, D. Q. Duffy, T. Lee, M. K.

Bowen, and C. Yang. A spatiotemporal indexing approach

for efficient processing of big array-based climate data with

mapreduce. IJGIS, 2016.

[18] W. Lin, X. Xiao, and G. Ghinita. Large-scale frequent

subgraph mining in mapreduce. In ICDE, 2014.

[19] J. Lu and R. H. Guting. Parallel Secondo: Boosting Database

Engines with Hadoop. In ICPADS, 2012.

[20] Q. Ma, B. Yang, W. Qian, and A. Zhou. Query Processing of

Massive Trajectory Data Based on MapReduce. In

CLOUDDB, 2009.

[21] Land Process Distributed Active Archive Center, Mar. 2015.

https://lpdaac.usgs.gov/about.

[22] Data from NASA’s Missions, Research, and Activities, 2016.

http://www.nasa.gov/open/data.html.

[23] S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi.

MD-HBase: Design and Implementation of an Elastic Data

Infrastructure for Cloud-scale Location Services. DAPD,

2013.

[24] NYC Taxi and Limousine Commission, 2016. http:

//www.nyc.gov/html/tlc/html/about/trip_record_data.shtml.

[25] L. Qin, J. X. Yu, L. Chang, H. Cheng, C. Zhang, and X. Lin.

Scalable big graph processing in mapreduce. In SIGMOD,

2014.

[26] Apache. Spark. http://spark.apache.org/.

[27] ST-Hadoop website. http://st-hadoop.cs.umn.edu/.

[28] H. Tan, W. Luo, and L. M. Ni. Clost: a hadoop-based storage

system for big spatio-temporal data analytics. In CIKM,

2012.

[29] 2016. https://about.twitter.com/company.

[30] R. T. Whitman, M. B. Park, S. A. Ambrose, and E. G. Hoel.

Spatial Indexing and Analytics on Hadoop. In SIGSPATIAL,

2014.

[31] J. Yu, J. Wu, and M. Sarwat. GeoSpark: A Cluster

Computing Framework for Processing Large-Scale Spatial

Data. In SIGSPATIAL, 2015.

