
TAREEG: A MapReduce-Based Web Service for Extracting
Spatial Data from OpenStreetMap*

Louai Alarabi, Ahmed Eldawy, Rami Alghamdi, Mohamed F. Mokbel

KACST GIS Technology Innovation Center, Umm Al-Qura University, Makkah, KSA

{larabi,eldawy,rghamdi,mmokbel}@gistic.org
University of Minnesota, Minneapolis, MN 55455, USA

{louai,eldawy,alghamdi,mokbel}@cs.umn.edu

ABSTRACT

Real spatial data, e.g., detailed road networks, rivers, build-
ings, parks, are not really available in most of the world.
This hinders the practicality of many research ideas that
need a real spatial data for testing experiments. Such data
is often available for governmental use, or at major software
companies, but it is prohibitively expensive to build or buy
for academia or individual researchers. This demo presents
TAREEG; a web-service that makes real spatial data, from
anywhere in the world, available at the fingertips of every
researcher or individual. TAREEG gets all its data by lever-
aging the richness of OpenStreetMap dataset; the most com-
prehensive available spatial data of the world. Yet, it is still
challenging to obtain OpenStreetMap data due to the size
limitations, special data format, and the noisy nature of spa-
tial data. TAREEG employs MapReduce-based techniques
to make it efficient and easy to extract OpenStreetMap data
in a standard form with minimal effort. TAREEG is acces-
sible via http://www.tareeg.org/

1. INTRODUCTION
Taking advantage from the explosion in the number of

GPS-enabled smart devices and the ubiquity of location ser-
vices, there has been an increasing interest from industry
and academia to advance the state of the art in location-
based services that include shortest path queries, k-nearest-
neighbor queries, range queries, spatial keyword search, and
others (e.g., [9, 4, 10]). However, a major obstacle in pro-
gressing this kind of research is the difficulty in getting hands
on real spatial data. While this may not be a problem for
major industries, who can afford buying actual and accurate
spatial data from specialized companies (e.g., NavTeq), this
is prohibitively expensive for small startups and academia.

∗This work is supported in part by KACST GIS Technology
Innovation Center at Umm Al-Qura University, under project
GISTIC-13-14, and was done while the first, second, and fourth
authors were visiting the center.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.

Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.

http://dx.doi.org/10.1145/2588555.2594528.

To fill in this gap, OpenStreetMap [6] has been launched
in 2004 to allow volunteers to combine their efforts in build-
ing an exhaustive and trustworthy map for the whole planet
with an increased focus given to road networks. Open-
StreetMap whole world dataset is free and accessible as a
file called Planet.osm in an XML format that is updated
on daily basis, where its current size is 435 GB. Despite its
richness, using this data is not an easy task due to its huge
size and non-standard format. For example, to extract the
road network of Istanbul, Turkey, one needs to parse the
whole 435 GB file, and extract the parts that are related to
Istanbul. Furthermore, in these parts, one needs to parse
records carefully, to extract the XML tags that are related
to road networks and exclude everything else. Also, we need
to overcome the noisy data as many of the data there are
contributed from volunteers. As a result, several attempts
were proposed to extract data from OpenStreetMaps. For
example, the GeoFabrik project [3] allows users to down-
load a predefined area from OpenStreetMaps, yet it does
not provide any kind of extraction of specific map features
(e.g., road network). It is basically a range query service
over existing data without any attempt to read the noisy
format. Also, osmosis [8] and osm2pgsql [7] are two pro-
posed tools that attempt to process the whole Planet.osm

by loading it on spatial databases. However these tools may
take up to several days for loading the entire Planet.osm

file. For instance, in [5], the authors report that they spent
305 hours (approximately 12 days) for loading and analyz-
ing the data for their experiment. In another benchmark of
osm2pgsql, importing the Planet.osm to database takes up
to 7 days of processing [7].

In this demo, we present TAREEG; an easy and effi-
cient web service tool to extract spatial data from Open-
StreetMaps. TAREEG users can: (1) extract geographical
information through a nicely designed web service with the
daily updated geographical data on any arbitrary region on
world map, (2) Export the extracted data in CSV, KML, and
shapefile formats, and (3) Visualize the geographical data
on the map using four different mapping engines, which are
OpenStreetMap, Google Maps, Google Hybrid Maps, and
Esri Maps. All TAREEG services are done very efficient
and online. For most of the requests, it takes only few sec-
ond to receive the extracted data via email.

The key idea behind the performance of TAREEG is that
it uses the MapReduce paradigm to speed up data extrac-
tion, indexing, and querying from Planet.osm file. In par-
ticular, TAREEG is powered by SpatialHadoop [2]; an ex-

http://www.tareeg.org/

Figure 1: System Overview

tended MapReduce framework that deals efficiently with
spatial data. In terms of data extraction and indexing,
TAREEG takes advantage of SpatialHadoop and its dis-
tributed nature in the following: (1) each machine inde-
pendently downloads part of the Planet.osm file that needs
to be processed on that machine, decompress and process
it on the fly. (2) TAREEG employs a special file splitter

and record reader components that are capable of efficiently
parsing the whole file and extracting its data in a distributed
manner, and (3) TAREEG uses the indexing capabilities of
SpatialHadoop to build efficient spatial indices for extracted
data which allows user queries to run instantly on very large
datasets. As a result, downloading and indexing the whole
OpenStreetMap with all its spatial features takes few hours
instead of few days. Then, querying this data takes few
seconds instead of hours. The idea is that SpatialHadoop
partitions this data over computing nodes using a spatial
partitioning scheme, where spatially close by features are
stored in the same file block.

2. SYSTEM OVERVIEW
Figure 1 gives the system overview of TAREEG. A map-

reduce framework is used to handle a large scale dataset. A
user interacts with TAREEG via its front-end that includes
a web interface allowing users to submit their requests of any
arbitrary region on the world map. Users may also visualize
the extracted information via TAREEG front-end. Inter-
nally, TAREEG processes user requests by fetching the spa-
tial information from spatial indexed files. TAREEG system
back-end processes user requests through several processing
stages: (1) Extraction stage, which is responsible for cat-
egorizing the contents of Planet.osm into bunch of homo-
geneous information stored separately, (2) Indexing stage,
which is responsible for building spatial indexes on the ex-
tracted data, and (3) Querying stage, which is responsible
on querying the indexed data.

As OpenStreetMap is updated on a daily or weekly ba-
sis, TAREEG employs an automatic updater module that is
responsible for downloading the latest Planet.osm file and
trigger the extraction and indexing stages. Automated mod-
ule runs automatically daily once a new dataset is updated.

3. DATA EXTRACTION
Extracting information from OpenStreetMap is not a

trivial task. OpenStreetMap dataset stores all data types
sequentially in one large volume file in a semi-structured
XML format. The XML file starts with nodes, then ways,
and finally, relations. Tags are nested in each of these data
types. The challenge of extracting information from Open
StreetMap depends on identifying the annotation (i.e.,
tags) that imply categorized spatial data. We basically run
a map-reduce job which takes the URL of the compressed
Planet.osm file as an input. The output of data extraction
will be several categorized files. Each file contains a
homogeneous spatial information, e.g., road network data
will be stored in one file and lakes in another one. In this
phase, we implement a map-reduce program to extract
information from the large scale OpenStreetMap data. We
retrieve the URL of the latest version of Planet.osm and
trigger a map-reduce job with the following three main
components, namely splitter, Record Reader, and Mapper,
described briefly below:

• Splitter: The splitter component breaks the input
Planet.osm file into chunks of 64 MB (the default
block size in HDFS). Since the file is compressed in
block zip format, it is possible that each chunk is
downloaded and decompressed separately to extract
part of the XML file. Such splitting will cause
inconsistent XML structures in each split which is
handled later by the Record Reader. Thus, splitting
the Planet.osm will parallelize and distribute the
processing load into several map tasks, which is much
faster than processing on a single node machine.

• Record Reader: Basically, default record reader
in Hadoop processes text files line-by-line, so we
can not process the data of Planet.osm inline. Due
to the inconsistent representation of each split, we
implemented an XML element reader instead of the
default line reader provided by Hadoop framework.
The output of this component is an XML element

which will be sent later to the mapper. In addition,
record reader is responsible for completing inconsis-
tent elements in each split. To elaborate more, if a
split has some missing information about one concise
type such as buildings, the record reader will fetch
these missing information from the next split. Then
the element(s) are passed to the mapper.

• Mapper: This component receives elements sent by
the Record Reader and classifies each element based on
its annotation (i.e., tags), and then writes the result
into separate files, based on the type of the extracted
data, to HDFS, i.e., all road networks are written in
one file, while lakes are written in another file, and
so on. These data are stored randomly as a set of
nodes N , which consists of N = {node id, longitude,
latitude, tags} and another set of extracted data R

that consists of R = {edge id, node1 id, node2 id,
tags}. R described as any type of geographical data,
such as road network, lakes, buildings, or zip code,
state, and national boundaries.

Figure 2: Spatial Data Partitioned

We use Pig [1] to combine the extracted data R with its
spatial information (i.e., geolocation) from nodes N in a way
similar to the join operation in any relational database. The
output of the Pig program is a spatial set R′ that consists of
R′ = {edge id, node1 id, longitude1, latitude1, node2 id,
longitude2, latitude2, tags}. Each record r′ ∈ R′ is now
associated with the corresponding geo-location and neither
sparsely nor spatially stored in HDFS.

4. INDEXING
Files generated by the extractor are heap files which are

not organized in a specific order. This means that a range
query executed to extract data in a specific region would
have to scan the whole file to retrieve the result. This
will considerably slow down the system, especially for larger
datasets such as road network which has a total size of
130 GB. To speed up the processing of extracted datasets, we
need to build spatial indexes for each dataset that efficiently
supports range queries. One method to index datasets is to
store each one as a relation in a spatial DBMS (e.g., Post-
GIS), and build a spatial index such as an R-tree on that
relation. Once the relation is indexed, range queries can
be expressed in SQL and executed efficiently inside the spa-
tial DBMS. Unfortunately, this technique rendered infeasible
due to the long time consumed to build the indexes.

To be able to construct the indexes efficiently in a timely
manner, we use SpatialHadoop [2] to take advantage of its
spatial indexing techniques. SpatialHadoop supports differ-
ent types of spatial indexes including Grid file, R-tree, and
R+-tree. Once datasets are extracted from the Planet.osm

file, we use the SpatialHadoop ‘index’ command on each file
separately to build an index for it. The partition size is set
to 64 MB (default for Hadoop). Each index is stored as one
master file that stores the boundaries of each partition, and
multiple data files with each file containing line segments
overlapping with one partition.

Figure 2 gives the main reason behind the efficiency of
spatial data indexing and querying in TAREEG. The figure
shows an R+-tree partitioning scheme for the whole road
network file. All road networks are depicted in blue lines,

while the black rectangles in indicate partition boundaries.
While some road segments cross multiple partitions, par-
tition boundaries remain disjoint due to the properties of
the R+-tree. As each partition is sufficient for only 64 MB
worth of data, we can see that dense areas (e.g., Europe)
are contained in very small partitions, while sparse areas
(e.g., oceans) are contained in very large partitions. One
way to look at this figure is that this is the way that Spa-
tialHadoop divides a dataset of 455 GB into small chunks,
each of 64 MB. Recall that in Hadoop, this 455 GB file will
be divided into chunks of 64 MB as sequential heap file,
which definitely does not fit spatial operations.

5. QUERY PROCESSING
Queries sent to TAREEG are basically range queries that

request extracting a certain type of spatial data (e.g., road
networks, lakes, buildings, borders) within a certain area
of interest, presented as a rectangular area. When a range
query is sent to TAREEG, it first executes that query on
the master file to retrieve partitions that overlap the range
query. For each matching partition, the records in the cor-
responding data file are compared to the query range and
all matching records are stored as part of the answer. Since
in R+-tree some records overlapping multiple partitions are
replicated, a post processing duplicate avoidance step is ex-
ecuted to ensure the correctness of the answer as described
in [2].

6. DEMONSTRATION SCENARIO
Conference audience can interact with TAREEG through

two main functionalities: (1) Data extraction request, where
audience can submit extraction requests through nicely de-
signed web interface, by selecting any arbitrary region of
world map and the type of spatial data they want to ex-
tract. (2) Spatial data download and visualization, where
audience can download and visualize exported data on ei-
ther OpenStreetMap, Google Maps, Google Hybrid Maps
(i.e., hybrid satellite images with labels), and Esri Maps (i.e
National Geographic map). A first version of TAREEG is
currently accessible online at: http://www.tareeg.org

http://www.tareeg.org

Figure 3: TAREEG Web Interface

6.1 Spatial Data Extraction Request
Initially, audience interact with TAREEG system by re-

questing different spatial data type as shown in Figure 3,
following few steps: (1) the user selects any arbitrary re-
gion from the world map, either by zooming and draging
the map to the geographical area of interest, or by searching
the area of interest using the search bar, (2) the user speci-
fies a boundary rectangle of the selected region, (3) the user
provides an email address, in which TAREEG will send an
email when the request is satisfied with links to download
the requested data, and (4) the user submits the request by
hitting the ‘Extract button’.

Once a request is received, TAREEG processes this
request by querying the requested spatial data from the
back-end of the system, and notifies the requester through
email once the data is available. It is important to note
here that all requests to TAREEG are satisfied from its own
local data, as there is no need to contact OpenStreetMap
servers, and hence requests are usually satisfied within a
few seconds. Once the requested data is available, the
user will receive an email from TAREEG with hyperlinks
to download the requested data. The time of processing
the request depends on the size of the selected region and
complexity of the requested dataset.

6.2 Spatial Data Download & Visualization
TAREEG users receive their extracted data in three com-

mon standard formats, a Comma Separated Values (CSV)
files, Google Keyhole Markup Language (KML), and Esri
geospatial vector (shapefile) formats . TAREEG only sup-
ports visualizing (CSV) format, where KML and shapefile
can be already visualized through various applications (e.g
QGIS, Google Earth). The CSV format has the following
structure:

Node < Node_id , Latitude , Longitude >
Edge <Edge_id , Start_Node_id , End_Node_id , [Tags] >

Figures 4 and 5 give two examples of the visualization
tool of TAREEG, where an extracted set of lakes and road
networks are visualized, respectively. TAREEG visualizer
shows the spatial data on the map by uploading the CSV
files, that were sent to the user as hyperlinks in an email.
TAREEG visualizer supports four different mapping en-
gines, where audience can experience the easiness of switch-
ing the gear between these mapping engines.

Figure 4: Extracted lakes

Figure 5: Extracted Road Networks

7. REFERENCES
[1] Apache. Pig http://pig.apache.org/, June 2013.

[2] A. Eldawy and M. F. Mokbel. A demonstration of
spatialhadoop: An efficient mapreduce framework for
spatial data. PVLDB, 2013.

[3] geofabrik. http://download.geofabrik.de/, Dec. 2013.

[4] S. Luo, Y. Luo, S. Zhou, G. Cong, and J. Guan.
DISKs: a system for distributed spatial group keyword
search on road networks. 5(12):1966–1969, 2012.

[5] P. Mooney and P. Corcoran. Characteristics of heavily
edited objects in openstreetmap. Future Internet,
2012.

[6] OSM. http://www.openstreetmap.org, Dec. 2013.

[7] osm2pgsql. Benchmarks jun 2012
http://wiki.openstreetmap.org/wiki/Osm2pgsql/benchmarks.

[8] Osmosis. 2013
http://wiki.openstreetmap.org/wiki/Osmosis.

[9] J. R. Thomsen, M. L. Yiu, and C. S. Jensen. Effective
caching of shortest paths for location-based services.
SIGMOD, 2012.

[10] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and
S. Zhou. Shortest path and distance queries on road
networks: towards bridging theory and practice.
SIGMOD, 2013.

	Introduction
	System Overview
	Data Extraction
	Indexing
	Query Processing
	Demonstration Scenario
	Spatial Data Extraction Request
	Spatial Data Download & Visualization

	References

