
TAREEG: A MapReduce-Based System for Extracting
Spatial Data from OpenStreetMap

Louai Alarabi, Ahmed Eldawy, Rami Alghamdi, Mohamed F. Mokbel

Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN

{louai,eldawy,alghamdi,mokbel}@cs.umn.edu

ABSTRACT

Real spatial data, e.g., detailed road networks, rivers, build-
ings, parks, are not easily available for most of the world.
This hinders the practicality of many research ideas that
need a real spatial data for testing and experiments. Such
data is often available for governmental use, or at major soft-
ware companies, but it is prohibitively expensive to build
or buy for academia or individual researchers. This paper
presents TAREEG; a web-service that makes real spatial
data, from anywhere in the world, available at the fingertips
of every researcher or individual. TAREEG gets all its data
by leveraging the richness of OpenStreetMap data set; the
most comprehensive available spatial data of the world. Yet,
it is still challenging to obtain OpenStreetMap data due to
the size limitations, special data format, and the noisy na-
ture of spatial data. TAREEG employs MapReduce-based
techniques to make it efficient and easy to extract Open-
StreetMap data in a standard form with minimal effort.
Experimental results show that TAREEG is highly accurate
and efficient.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial databases and
GIS

Keywords

Spatial, MapReduce, Hadoop, GIS, OpenStreetMap

1. INTRODUCTION
There is a major need to have full access to underlying

real road networks to experiment and evaluate various al-
gorithms, which include shortest path queries [14, 28, 35,

∗This work is supported in part by KACST GIS Technology
Innovation Center at Umm Al-Qura University, under project
GISTIC-13-14, and was done while all the authors were visiting
the center

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL’14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA
Copyright 2014 ACM 978-1-4503-3131-9/14/11$15.00
http://dx.doi.org/10.1145/2666310.2666403.

36, 38, 39], k-nearest-neighbor queries [4, 11, 12, 13, 17,
19, 37, 40], reverse nearest neighbor query [15, 30], range
queries [3], skyline query [5, 33], among others (e.g., [16, 32,
39]). Unfortunately, it is always challenging to get such real
road network, which imposes a major obstacle in advancing
the research in such algorithms. Usually, researchers either:
(a) buy actual and accurate spatial data from specialized
companies (e.g., NavTeq Here [20]). Yet, this is prohibitively
expensive for academia and small startups. (b) share some
common road network data among themselves, which result
in the case that many research papers use the same road
network data for their evaluation. While this may be used
as a benchmark, but it also limits the applicability of the
developed algorithms to a wide variety of road networks, or
(c) rely on their own efforts on extracting road networks from
publicly available datasets, e.g., Tiger/Line files [34] (avail-
able only for USA road network) and OpenStreetMap [24]
(available for the whole world).

However, such approach needs a learning curve, which is
not easy for all researchers. In addition, Tiger/Line files [34]
are only limited to USA, and hence is of no use to get the
road network anywhere else in the world. To fill in this
gap, OpenStreetMap [24] has been launched in 2004 to al-
low volunteers to combine their efforts in building an ex-
haustive and trustworthy map for the whole world with an
increased focus given to road networks in a single 500 GB file
Planet.osm. Despite its richness, using OpenStreetMap data
is not an easy task due to its huge size and non-standard for-
mat. For example, to extract the road network of Istanbul,
Turkey, one needs to: (1) understand the XML file format
and its tags, (2) parse the whole 500 GB file to extract only
the parts within the area of Istanbul, (3) within the ex-
tracted parts, parse records carefully to extract the XML
tags that are related to road networks and exclude every-
thing else, and (4) overcome the noisy data as many of the
OpenStreetMap data are voluntarily contributed.

Several attempts were proposed to extract data from
OpenStreetMap. For example, the GeoFabrik project [8]
allows users to download a predefined area from Open-
StreetMap, yet it does not provide any kind of extraction
of specific map features (e.g., road network). It is basi-
cally a range query service over existing data without any
attempt to read the noisy format. Also, osmosis [26] and
osm2pgsql [25] are two proposed tools that attempt to pro-
cess the whole Planet.osm by loading it on spatial databases.
However these tools may take up to several days for loading
the entire Planet.osm file. For instance, in [18], the authors
report that they spent 305 hours (approximately 12 days) for

loading and extracting the data for their experiments. In an-
other benchmark of osm2pgsql, importing the Planet.osm

to database takes up to 7 days of processing [25].
In this paper, we present TAREEG; an easy and effi-

cient system to extract spatial data from OpenStreetMap.
TAREEG is set up as an online web service available 24/7
at [31]. An initial version of TAREEG has been demon-
strated in SIGMOD 2014 [1]. Unlike all previous approaches,
TAREEG overcomes the challenges of processing Open-
StreetMap dataset (i.e., Planet.osm) with a high accuracy,
efficiency, and performance. Users of TAREEG can: (1) ex-
tract geographical information for anywhere in the world us-
ing a nicely designed web service, (2) export the extracted
data in various data formats that include Comma Separated
Values (CSV), Keyhole Markup Language (KML), Esri
Shapefiles, and/or Well-known-Text (WKT) formats and
(3) visualize the extracted geographical data on TAREEG
using four different mapping engines, which include Open-
StreetMap, Google Maps, Google Hybrid Maps, and Esri
Maps. All TAREEG services are made available online 24/7
at [31] to the community in large to give a full access to
spatial data. Available spatial data does not only include
all road networks in the whole world, but also other spatial
features (e.g., lakes, buildings, rivers, and parks). The re-
quested data are sent back to the requesting user in a form
of an email with hyperlinks to download the requested data
in different formats. The turnaround time to send the re-
quested data back to the users highly depends on the size
of the requested data. Yet, it is always a a matter of few
seconds for city level requests.

TAREEG is composed of the following four main module
(1) The Data Extraction module, which runs on a weekly
basis to download a 500 GB file from OpenStreetMap, ex-
tracts its spatial features, and cleans its noisy data, (2) The
Indexing module, which runs right after the Data Extrac-

tion module to index the extracted data using an R-tree-
like indexing technique over multiple machines as a means
for achieving scalability, (3) The Query Processor module,
which receives the user requests for obtaining spatial data,
converts the request to a range query with the user specified
area and a predicate filter for the spatial feature, and fi-
nally exploits the R-tree-like index structure to retrieve the
requested data in an efficient way, and (4) The Front-end

Visualizer module, which is a nicely designed web interface
that allows users to express their data requests, calls the
Query Processor module for execution, sends an email to the
users with links to the requested data and finally visualize
the extracted data on various mapping engines that include
Google Maps, Google Hybrid Maps, OpenStreetMap, and
Esri Maps.

The efficiency and scalability of TAREEG is mainly due
to the fact that it leverages the power of MapReduce-based
processing. In particular, TAREEG is powered by Spatial-
Hadoop [6]; an extended MapReduce framework that deals
efficiently with spatial data. TAREEG takes advantage of
SpatialHadoop and its distributed nature, along with large
number of machines, in the following: (1) each machine in-
dependently downloads part of the OpenStreetMap data,
efficiently parses its own part, and extracts the spatial fea-
tures from its share of the data, (2) TAREEG uses the
indexing capabilities of SpatialHadoop to partition the ex-
tracted data on multiple computing nodes (machines) us-
ing a spatial index partitioning scheme, and (3) Satisfy-

<?xml version="1.0" encoding="UTF-8"?>
<osm version="0.6"/>

<node id="1" lat="21.4219827" lon="39.8336534">

<tag k="traffic" v="light"/>
</node>

<node id="2" lat="21.4221823" lon="39.8331833">
<tag k="highway" v="motorway_junction"/>

</node>
. . .
<way id="6">

<nd ref="1"/>
<nd ref="2"/>

<tag k="highway" v="service"/>
</way>
<way id="8">

<nd ref="4"/>
<nd ref="5"/>

<tag k="type" v="multipolygon"/>
</way>

. . .
<relation id="2">

<member type="relation" ref="1" role="inner"/>

<member type="way" ref="6" role="inner"/>
<tag k="highway" v="primary"/>

</relation>
. . .

</osm>

Figure 1: OpenStreetMap Data Format.

ing the user requests is done through a querying engine
that exploits the partitioned data over multiple nodes done
by SpatialHadoop. As a result, downloading and indexing
the whole OpenStreetMap (a weekly offline process) takes
few hours in TAREEG instead of few days if done without
the MapReduce-based way in TAREEG. Also, querying the
whole dataset to satisfy user requests takes few seconds in
TAREEG instead of hours if done in a traditional way.

The rest of this paper is organized as follows: Section 2
gives a brief background about OpenStreetMap. Section 3
gives system overview of TAREEG. The main modules of
TAREEG, Data Extraction, Indexing, Query Processing,
and Front-end Visualization are described in Sections 4, 5,
6, and 7, respectively. Experimental evaluation is presented
in Section 8. Finally, Section 10 concludes the paper.

2. OVERVIEW OF OPENSTREETMAP
OpenStreetMap (OSM) [24], lunched in 2004, is a col-

laborative community project to create a free editable map
of the world. It is considered as the Wikipedia project for
maps, where the community can help in building the maps
around the world. OpenStreetMap has over 1.6 million reg-
istered users, where around 30% of them have made actual
contributions to the maps [21]. As it stands now, Open-
StreetMap has a very high accuracy [10] that is compara-
ble to proprietary datasources [10]. OpenStreetMap whole
world dataset is free and accessible as an XML 500 GB file
called Planet.osm, updated on weekly basis.

Figure 1 gives a snippet of the Planet.osm XML file.
The file consists of the following three primitive data types:
(1) Node, which is defined as a point in the space associated
with a node identifier, latitude and longitude coordinates,
(2) Way, which represents a line between two nodes, and
associated with the way identifer and the two nodes iden-
tifers of the two end points of the line. The line could be
simply a road segment, part of a boundary of a building,
city/country boundary, or part of a lake contour, (3) Rela-

tion, which represents the relation between nodes, ways, or
even other relation, and is used to express polygons. For ex-
ample, to express the boundaries of a certain lake, the nodes

planet.osm

Data Extraction

Query

User

Result

Front-End

Roads LakesParks

Automatic Updater

Map-Reduced

Extractor

Indexing

Spatial Indexer

Spatial

Index

Query Processing

Web-Based Front-

End and Visualizer

Query Processor

Query

Request
Result

Figure 2: System Overview

need to be defined, then the ways that connect nodes to each
other, then a relation that connects the ways together to ex-
press the lake boundary. As the dataset is contributed by
different volunteers, one lake may be expressed in various
relations that could be separated or nested (e.g., a relation

inside a relation), where each relation is composed of either
ways or nodes. For example, one lake is composed of two
separate relations X and Y . Relation X includes a set of
ways that form part of the lake, while relation Y is composed
on one way and a relation Z. Then, relation Z is composed
of a set of ways that form other part of the lake. Together,
relations X, Y , and Z form the whole shape of the lake.

Each of the three primitive data types node, way, and re-

lation is associated with a set of tags. A tag is basically
a (key, value) pair that gives extra information about the
primitive data type. Unlike the three basic primitives, tags
are not predefined, where volunteers can add new tags and
modify existing one. This makes OpenStreetMap data noisy
with non-standard tags. In TAREEG, we have experienced
several tags that are misinterpreted by volunteers. For ex-
ample, some volunteers added a skyway as road network
bridge and vice versa.

3. SYSTEM OVERVIEW
Figure 2 gives TAREEG system overview. TAREEG is

set up as an online web service available 24/7 at [31] to re-
ceive user requests of obtaining certain kind of spatial data
from anywhere in the world. From inside, TAREEG is com-
posed of four main modules, namely, Data Extraction, In-
dexing, Query Processor, and Front-End Visualizer, briefly
discussed below:

Data Extraction. This module runs as a background
process that wakes up on a weekly basis to download a
500 GB file Planet.osm from OpenStreetMap, extracts its
spatial features, and cleans its noisy data. This module also
classifies the extracted data into separate files, each repre-
sents one kind of spatial data, e.g., parks, road, or lakes.
This module faces two main challenges: (1) The large vol-
ume of the dataset and (2) the noisy dataset coming from
using non-standard tags. Details of the Data Extraction

module are presented in Section 4.
Indexing. This module runs immediately after the Data

Extraction module to index the extracted data. Hence, it is
also a background process runs on a weekly basis to index the
new downloaded data. Given the large size of the extracted
data, TAREEG leverages SpatialHadoop [6] to partition and
index the extracted data over a set of computing nodes in
an R-tree-like way. It is important to note that each type
of spatial data (e.g., parks, roads, and lakes) are partitioned
and indexed separately. Hence, there will be one index des-

ignated for road network data over all available computing
nodes, while another completely separate index will be des-
ignated for lakes data, and so on. Details of the Indexing

module are presented in Section 5.
Query Processor. This module receives the user re-

quests for obtaining spatial data, converts the request to
a range query with the user specified area and a predi-
cate filter for the spatial feature (e.g., road network, lakes),
and finally exploits the R-tree-like index structure to re-
trieve the requested data in an efficient way. In this mod-
ule, TAREEG Takes advantage of the fact that the Index-

ing module has partitioned the extracted data into multiple
computing nodes to execute its range query over multiple
nodes in parallel. Hence, an efficient query processing can
be achieved. Details of the Query Processing module are
presented in Section 6.

Front-End Visualizer. This module is basically a nicely
designed web interface that allows users to express their data
requests, calls the Query Processor module for execution,
sends an email to the users with links to the requested data,
and finally visualize the extracted data on various mapping
engines that include Google Maps, Google Hybrid Maps,
OpenStreetMap, and Esri Maps. This module is also respon-
sible on producing the output data in various formats that
include Comma Separated Values (CSV), Keyhole Markup
Language (KML), Esri Shapefiles, and/or Well-known-Text
(WKT). Users can also upload their extracted data any time
to just visualize it on TAREEG. This also helps in checking
the accuracy of the extracted data as it can be contrasted to
a ground truth from Google maps and other mapping ser-
vices, available in TAREEG. Details of front-end visualizer

module are presented in Section 7.

4. DATA EXTRACTION
Extracting information from OpenStreetMap is not a triv-

ial task. The whole OpenStreetMap dataset is stored se-
quentially in one large volume file in a semi-structured XML
format. The XML file starts with nodes, then ways, and fi-
nally, relations, while tags are nested in each of these data
types. A main challenge in extracting information from
OpenStreetMap is identifying the annotations (i.e., tags)
that imply categorized spatial data.

The Data Extraction module in TAREEG basically trig-
gers a script that runs weekly to execute two map-reduce
jobs, which take the URL of the compressed Planet.osm file
as an input, and outputs several categorized files. Each out-
put file contains a homogeneous spatial set of information,
e.g., road network data will be stored in one file and lakes
in another one, and so on. The first map-reduce job is con-
cerned with spatial features in a form of points and limes,
e.g., road network and rivers, while the second map-reduce
job is concerned with spatial features in a from of polygons,
e.g., lakes, parks, and building. In the rest of this section,
we will discuss each map-reduce job separately.

4.1 Line-based Data Extractor
To extract line-based data, e.g., road network and rivers,

TAREEG runs a map-reduce job with three main compo-
nents, namely, splitter, record reader, and mapper, described
below.

4.1.1 Splitter

The splitter component breaks the input file Planet.osm

Algorithm 1: Line-based Extractor-Record Reader

Input : Split S
Output: Position of last byte Key , Primitive OSM

element Value

1 Record reader R;
2 Element e ;
3 End byte end ← S length;
4 Current byte position ← 0;

5 while R has next OR e has child do

6 line ← R line read by record reader;
7 position ← number of read byte;
8 if line is a root e then

9 Value ← append line;
10 if e doesn’t have child then

11 Key ← set position;
12 return Value;

13 else if e has child then

14 Value ← append line;
15 if line is end of root e then

16 return Value;

17 else

18 e doesn’t have child And position > end

19 return Null;

into chunks of size 64 MB (the default block size in HDFS).
Since the file is compressed in a block zip format, it is possible
that each chunk is downloaded and decompressed separately
to extract part of the XML file. Such splitting may cause
inconsistent XML structures in each split, which is handled
later by the Record Reader. Thus, splitting the Planet.osm

will parallelize and distribute the processing load into several
map tasks, which is much faster than processing on a single
node machine.

4.1.2 Record Reader

The default record reader in Hadoop processes text files
line-by-line, so we can not process the data of Planet.osm
inline. Due to the inconsistent representation of each split,
we implemented an XML element reader instead of the de-
fault line reader provided by Hadoop framework. The out-
put of this component is an XML element, which will be
sent later to the mapper. In addition, record reader is re-
sponsible on completing inconsistent elements in each split.
To elaborate more, if a split has some missing information
about one concise type (i.e., spatial feature) such as build-

ings, the record reader will fetch these missing information
from the next split. Then the element(s) are passed to the
mapper. Therefore, when the next split is being processed
by the Record Reader, the head of the inconsistent element

will be ignored, as it has been already processed and sent to
the mapper with the previous split.

Algorithm. Algorithm 1 presents the pseudo code of
the Record Reader, where we process each split and return
a structured XML elements as a result. Since processing
splits are parallelized and distributed into several mapper
task, we need to keep track of the last byte processed by
the record reader. First, an XML Element that stores the
result, and the current end byte position are initialized (lines

1-4). Each processed split consists of a number of lines. We
iterate split lines one by one, while tracking the last position
of the iterated line (lines 6-7). The last byte position will be
returned in the result with the compact XML elements. The
iterated line will be appended to the result if it is part of
the compact element type (i.e., OpenStreetMap data type),
otherwise, if the iterated line exceeds the split length and
element does not have a root XML element, then it will be
ignored (lines 8-18). While processing a split, there could
be one of the following three possibilities:

1. Compacted element: Append the line that consists
of concise XML element e , where e has root of an
XML, and it does not have any nested elements e′. In
other words, if the iterated line represents a full semi-
structured OpenStreetMap element (i.e., nodes, ways,
relations), then line will be reported to the result and
no more lines need to be processed (lines 8-12). For ex-
ample, if we have node information stored in one line,
and this node does not have any associated tags.

2. Semi-compacted element: If the split contains the root
of an element e, with either closing tag not found in
the same split, or the same line. The Record Reader

will iterate more lines from the same split or next split
until closing tag of the root element e found (lines 13-
16). For instance, if iterated line begins with Open-
StreetMap way information. This way information ex-
tends into several lines. Record Reader will iterate lines
till it finds the end tags of that way.

3. Uncompacted element: Ignoring iterated lines if it does
not have a root element e. The main reason for ignor-
ing lines is that these lines must be processed with the
previous split (line 17). For example, if split begins
with subset of a way followed by a relation, then rela-
tion lines will be reported in the result. On the other
hand, way information will be ignored.

4.1.3 Mapper

This component receives elements sent by the Record

Reader and classifies each element based on its annotation
(i.e., tags). Then, it extracts and writes the results into sep-
arate files, based on the spatial feature of the extracted data.
These spatial features are stored randomly as a set of nodes
N , which consists of N = {node id, longitude, latitude,
tags} and another set of extracted spatial features R that
consists of R = {edge id, node1 id, node2 id, tags}. The
main challenge of the mapper is how to deal with extract-
ing spatial features from the noisy dataset. For example,
in TAREEG, we have experienced many misinterpreted an-
notations (i.e., tags) used to describe a downtown skyway,
while it is has other tags that are related to road networks.
Also in other cases, some tags are used to describe tunnel in
a road network, while in a map matching, it shows that it is
a tunnel between two buildings. TAREEG mapper handles
this kind of noise data by studying carefully each spatial
feature tags and filters tags on the fly while data is passed
to the mapper by the Record Reader.

Algorithm. Algorithm 2 gives the pseudo code of the
mapper. Once primitive XML elements received from Record

Reader, theMapper will process this element. Mapper classi-
fies primitive elements by checking the associated tags with
each element. XML element could be either compact ele-
ment or semi-compact element. Therefore, mapper writes

Algorithm 2: Line-based Extractor-Mapper

Input : Primitive Elements

Output: geographical data File

1 Event reader R;
2 while R has next element e do

3 type flag of classification;
4 if e is start element then

5 CategorizeElementFeature() → Get element
annotation;

6 if e is end element then

7 File type ← Write classified data;

8 return geographical data File

the classification of the processed element once the whole
element is being categorized based on its annotation (i.e.,
tags).

The Result of the Mapper is a set of files, each file repre-
sents a relation R that has a specific spatial feature. We use
Pig [2] to combine the extracted data in R with its spatial
information (i.e., geolocation) from nodes N in a way similar
to the join operation in any relational database. The out-
put of the Pig map-reduce program is a spatial set R′ that
consists of R′ = {edge id, node1 id, longitude1, latitude1,
node2 id, longitude2, latitude2, tags}. Each record r′ ∈ R′

is now associated with the corresponding geo-location. Yet,
R′ is neither sparsely nor spatially stored in Hadoop Dis-
tributed File System (HDFS).

4.2 Polygon-based Data Extractor
This section discusses the second Map-Reduce job run by

the Data Extraction module to extract polygon data, e.g.,
lakes, buildings, and parks.

The line-based extractor described above works well for
extracting some datasets such as road networks and rivers.
However, other datasets contained in the Planet.osm file
such as lakes and buildings are better represented in terms of
primitive geometric shapes such as polygons and line strings.

Therefore, TAREEG provides this polygon-based extrac-
tor, which extracts datasets as objects. Each object is rep-
resented by a triple (id, geometry, tags), where id is a unique
identifier, geometry is the geometric shape and tags are the
associated tags as a list of 〈 key, value〉 pairs. In addition
to the large size and non-standard format of Planet.osm file,
there are additional challenges which face the polygon-based
extractor. First, the spatial attribute (i.e., location) is only
included in the nodes section of the Planet.osm file while
other attributes (i.e., ID and tag) are in other sections. Sec-
ond, depending on the size and complexity of the geometric
shape, an object (e.g., lake) might be located in the nodes
section (simplest), in the ways section (complex) or in the
relations section (very complex). The data from the three
sections must be unified and merged in order to generate
one output file.

To overcome these challenges, we use Pigeon [7]; a high
level MapReduce language for spatial data. It includes stan-
dard relational operators such as selection, projection and
join and is backed up by OGC-compliant [23] spatial data
types and functions. Figure 3 provides a block diagram of
how the polygon-based extractor works. Each block indi-
cates an operation applied to the data. In step 1, the XML

Planet.som

Extract

Nodes

Extract

Ways

node-id

Make

Line/Poly

Extract

Relations

way

members

way-id=
member-id

Connect

Lines

way-id

IS NULL

relation-id

IS NULL

U
Dangled nodes Dangled ways

no

yes

no

1 2

7

6

54

3

910

11

MakePoint

8

yes

Split

12

...

BuildingsLakes ...

Figure 3: Block diagram of the polygon-based data extractor

elements in the nodes section of the Planet.osm file are read
and parsed to extract nodes information, node ID, latitude,
longitude, and tags. In this step, the MakePoint function
in Pigeon is called to combine the numeric values of lati-
tude and longitude into a Point object. In step 2, the same
thing is done with the ways section and the information ex-
tracted are way ID, list of node IDs in this way, and tags. In
step 3 the extracted ways are joined with the nodes on the
node ID column to add the spatial location of each point.
In this step, we use an outer join which causes all nodes to
be included in the output even if they do not match with
any extracted way. Those nodes are called dangled nodes

and they represent an object by themselves without being
assigned to a way such as mountains, traffic lights, and bus
stops. Step 4 splits the join output to separate dangled
nodes from other nodes. Dangled nodes are later written to
output while nodes assigned to ways are further processed
in the next step. Step 5 calls the Pigeon function Make-

LinePolygon, which groups points by way ID and generates
a polygon in case points form a closed loop or line if they
do not.

In step 6, relations are extracted from the Planet.osm

file, where each relation contains the attributes relation

Figure 4: Grid Files Spatial Data Partitioned

ID, members, and tags. Members is a list of tuples,
〈member−ID,member−type〉where member-type can take
one of the values point, way or relation. Step 7 selects mem-
bers of type way only as these are the ones needed in next
steps. Step 8 performs an outer join between relations and
ways on ‘way ID =member ID’ to add the spatial dimension.
As done in step 4, the result is filtered based on relation ID
to split dangled ways from ways assigned to relations. Dan-
gled ways represent objects that are totally defined in the
ways section and do not need to be combined with other
ways. Step 10 calls a Pigeon function named Connect which
connects a set of lines and polygons to form a more complex
shape based on the following cases: (1) If two line strings
share one end point, they are connected together to form
one longer line string, (2) If two line strings share two end
points, they are connected together to form a polygon, (3) If
two polygons are combined together and one polygon is con-
tained in the other polygon, the inner polygon is added as a
hole inside the first one, and (4) In any other case, the two
shapes are combined together to form a Geometry Collection

standard data type as defined by the OGC standard [23].
In step 11, the output of the Connect operation is unioned

with dangled nodes and dangled ways to produce the final
output that contains all objects found in the Planet.osm

file. The output has a unified schema (ID, Geometry, Tags),
where the geometry can be a point, line string, polygon, or
a geometry collection based on how it is generated. Finally,
step 12 splits those objects based on tags to the datasets we
are interested in such as lakes and buildings where each tag
results in a separate file.

5. INDEXING
This section describes the Indexing module in TAREEG,

which is triggered immediately after the execution of the
Data Extraction module. The files generated by the Data

Extraction module are heap files, which are not organized
in any specific order. This means that if a range query is
executed to return data from a specific region, the query
would have to scan the whole file to retrieve the result. This
will considerably slow down the system, especially for larger
datasets, such as road networks. To speed up the process-
ing of extracted datasets, the Indexing module in TAREEG
builds spatial indexes for each dataset that efficiently sup-

port range queries. One method to index datasets is to store
each input file as a relation in a Spatial Database Manage-
ment System (DBMS), e.g., PostGIS [27]. Then, we can
build a spatial index, e.g., R-tree [9] on that relation. Once
the relation is indexed, range queries can be expressed in
SQL and executed efficiently inside the spatial DBMS. Un-
fortunately, such technique rendered infeasible due to the
long time consumed to build the indexes.

In TAREEG, to be able to construct the indexes effi-
ciently, we use SpatialHadoop [6] to take advantage of its
spatial indexing techniques. SpatialHadoop supports dif-
ferent types of spatial indexes including Grid file [22], R-
tree [9], and R+-tree [29]. Once datasets are extracted from
the Planet.osm file, we use the SpatialHadoop ‘index’ com-
mand on each file separately to build an index for it. The
partition size is set to 64 MB (default for Hadoop). Each
index is stored as one master file that stores the boundaries
of each partition, and multiple data files, each with its cor-
responding set of spatial data overlapping with the partition
boundaries. We briefly discuss below each index structure
and its suitability to OpenStreetMap dataset.

Grid index. In a grid index, data are partitioned into a
uniform grid file structure, where it is distributed based on
the geolocation of spatial features into equal spatial dimen-
sion size. In other words, data are not equally partitioned
by block size. Figure 4 gives the grid index of road net-
work data. Obviously, data are not uniformally distributed
based by block size between partitions. For instance, in a
dense area like Houston Texas, the partition might exceed
the blocking size. On the other hand, in rural areas the
partition size is larger then the data size, due to the lack of
the data in that spatial region. This results in a huge waste
of storage as most partitions are under utilized. This also
affects the query processing as more partitions need to be
visited even for a small range query.

R-tree index. In the R-tree index, we first partition the
data in a balanced tree. Each partition represents a min-
imum boundary rectangle (MBR) that includes a block of
data of size 64 MB. The partition boundaries are decided
based on the data distribution, and may be overlapped.
Data items that overlap with more than one partition are
stored once.

R+tree index. Similar to the case of R-tree index, data
are partitioned in a balanced tree with each partition rep-

Figure 5: R+tree Spatial Data Partitioned

resenting a minimum boundary rectangle of a set of points
of size 64 MB. The only difference is that the partitions in
the R+-tree are not overlapped. Hence, one object may be
stored with all the partitions it overlaps with.

Figure 5 gives the main reason behind the efficiency of
spatial data indexing and querying in TAREEG. The fig-
ure shows an R+-tree partitioning scheme for the whole
road network file. All road networks are depicted in blue
lines, while the black rectangles indicate partition bound-
aries. While some road segments cross multiple partitions,
partition boundaries remain disjoint due to the properties of
the R+-tree. As each partition is sufficient for ONLY 64 MB
worth of data, we can see that dense areas (e.g., Europe) are
contained in very small partitions, while sparse areas (e.g.,
oceans) are contained in very large partitions. One way
to look at this figure is that this is the way that Spatial-
Hadoop divides a dataset of 500 GB into small chunks, each
of 64 MB. Recall that in Hadoop, this 500 GB file will be
divided into chunks of 64 MB as sequential heap file, which
definitely does not fit spatial operations.

6. QUERY PROCESSING
Queries sent to TAREEG are basically range queries that

request extracting a certain type of spatial data (e.g., road
networks, lakes, buildings, borders) within a certain area
of interest, presented as a rectangular area. When a range
query is sent to TAREEG, it first executes that query on the
master file to retrieve partitions that overlap with the range
query. For each matching partition, the records in the corre-
sponding data file are compared to the query range and all
matching records are stored as part of the answer. If match-
ing records lie in more than one data partition, TAREEG
exploits the parallelism of computing nodes to execute the
query simultaneously on different partitions. Since in R+-
tree some records overlapping multiple partitions are repli-
cated, a post processing duplicate avoidance step is executed
to ensure the correctness of the answer as described in [6].

7. SYSTEM FRONT-END
The system front-end provides a set of tools for users

to extract and visualize their requested spatial data. As
TAREEG is deployed as 24/7 online web service, it is de-
signed for simplicity, where user can extract, download,

and visualize the spatial features. The system front-end of
TAREEG consists of two main modules: (1) Data extraction

request, where users can submit extraction requests through
nicely designed web interface, by selecting any arbitrary re-
gion of world map and the type of spatial data they want to
extract. (2) Spatial data download and visualization, where
users can download and visualize exported data on either
OpenStreetMap, Google Maps, Google Hybrid Maps (i.e.,
hybrid satellite images with labels), and Esri Maps (i.e Na-
tional Geographic map).

7.1 Spatial Data Extraction Request
Initially, users interact with TAREEG system by request-

ing different spatial data types as shown in Figure 6a, follow-
ing few steps: (1) the user selects any arbitrary region from
the world map, either by zooming and draging the map to
the geographical area of interest, or by searching the area of
interest using the search bar, (2) the user specifies a bound-
ary rectangle of the selected region, (3) the user provides an
email address, in which TAREEG will send an email when
the request is satisfied with links to download the requested
data, and (4) the user submits the request by hitting the
‘Extract button’.

Once a request is received, TAREEG processes this re-
quest by querying the requested spatial data from the back-
end of the system, and notifies the requester through email
once the data is available. It is important to note here that
all requests to TAREEG are satisfied from its own local data,
as there is no need to contact OpenStreetMap servers, and
hence requests are usually satisfied within a few seconds.
Once the requested data is available, the user will receive
an email from TAREEG with hyperlinks to download the
requested data. The time of processing the request depends
on the size of the selected region and complexity of the re-
quested dataset.

7.2 Spatial Data Download & Visualization
TAREEG users receive their extracted data in four com-

mon standard formats, a Comma Separated Values (CSV)
files, a Keyhole Markup Language (KML), Esri shape files,
and Well-Know Text (WKT) formats. TAREEG only sup-
ports visualizing (CSV) format, where others can be already
visualized through various applications (e.g., QGIS, Google
Earth, and Esri ArcGIS). The CSV format has the following

(a) TAREEG Web Interface (b) Extracted lakes (c) Extracted Road Networks
Figure 6: TAREEG System Web Interface

(a) Straightforward road network extraction (b) TAREEG road network extraction
Figure 7: Accuracy of TAREEG road network

structure:

Node < Node_id , Latitude , Longitude >
Edge <Edge_id , Start_Node_id , End_Node_id , [Tags] >

Well Known Text (WKT) serialization is standardized by
OGC and provides a textual representation for geometric
objects with the following structure:

Triple (id , geometry , tags)
Point (Latitude , Longitude)
Line (Point_1, Point_2, Point_3, ..., Point_n)
Polygon (Point_1, Point_2, Point_3, ..., Point_n)

Figures 6b and 6c give two examples of the visualiza-
tion tool of TAREEG, where an extracted set of lakes and
road networks are visualized, respectively. TAREEG visu-
alizer shows the spatial data on the map by uploading the
CSV files, that were sent to the user as hyperlinks in an
email. TAREEG visualizer supports four different mapping
engines, where user can experience the easiness of switching
the gear between these mapping engines.

8. SYSTEM EVALUATION
This section evaluates TAREEG in terms of its accuracy

in extracting spatial data from OpenStreetMap as well as its
performance when relying on MapReduce-based implemen-
tation. All experiments in this section was run on Amazon
web services with 20 machines.

9. ACCURACY
In this section, we evaluate the accuracy of the Data Ex-

traction module in TAREEG.We compare TAREEG against
a straightforward data extraction that is just based on the
existing tags of OpenStreetMap. Figure 7 shows such com-
parison for a subarea in Houston, TX. We used Google Maps
in the background as the ground truth, while blue lines
represent the extracted road network using a straightfor-
ward OpenStreetMap tag extraction (Figure 7a) or using
TAREEG road network extraction (Figure 7b).

It is clear to see that the quality of TAREEG extraction is
higher than the straightforward approach. There are many
road segments that are not recognized by the straightforward
extraction. Most importantly, the set of highway segments
and exit roads in the top middle of the map. Yet, all these
segments and exits are all well extracted by TAREEG. The
main reason here is that these parts are annotated with dif-
ferent tags from the rest of the roads. We have learned this
in TAREEG, and cleaned the segments, when doing the ex-
traction, and hence we did achieve much better accuracy.
Though not show in pictures, but we have witnessed many
cases where the straightforward extraction mistakenly ex-
tracts pedestrian sidewalks and skyways as road segments,
while TAREEG extraction makes it always right by effi-
ciently and smartly comparing several associated tags to-
gether to ensure the quality of road extraction.

Figures 8a and 8b give two examples of the accuracy of
TAREEG when extracting road network for Makkah, Saudi
Arabia, and Istanbul, Turkey, respectively. We are not com-

(a) Makkah TAREEG road network (b) Istanbul TAREEG road network
Figure 8: Accuracy of TAREEG road network

Figure 9: Extraction time

paring here against the straightforward extraction, as we
will end up having similar accuracy as that of Figure 7. The
purpose of this experiment is just to shows the quality of
TAREEG road extraction in various cities around the world.

9.1 Performance
This section discusses the performance of index building,

data extraction, and querying time in TAREEG.

9.1.1 Data Extraction

Figure 9 compares the extraction time of TAREEG (using
MapReduce) with the extraction time of a single-machine
process (centralized) and using a traditional spatial database
(PostGIS [27]), for different data sets with different sizes
starting from a small data set with only Central America to
the whole data set of the planet. In all cases, TAREEG is
consistently superior than other techniques with at least one
order of magnitude better performance. For example, for the
whole planet, it takes about two hours from TAREEG to do
all the extraction in high accuracy, however, it takes more
than a whole day from PostGIS and centralized processing
to extract the same data. In fact, in many cases, we had to
kill and rerun the experiment for PostGIS, as in sometimes
the experiment goes forever without finishing.

9.1.2 Index Building

Table 10 compares the usage of three indexing techniques,
Grid file, R-tree, and R+-tree for spatial data indexing in
TAREEG. The three indexing structures have similar build-

- Grid File R-tree R+tree
Build index (sec) 674 601 690
number of partition 3559 10654 10583
Avg Partitionsize (MB) 38.5 12.8 12.9

Figure 10: Index Evaluation of Road Network

ing time in the order of 600 seconds. However, it is clear that
both R-tree and R+-tree have higher number of partitions
than that of the grid structure. This goes in favor for the
tree indexing for two main reasons: (1) Higher number of
partitions means that the incoming query can be better done
in parallel over the 20 machines we have, and (2) Whenever
reading from a partition, we only read a small set of data
that is relevant to the query we have. This is in contrast to
large-sized partitions that result in reading a lot of redun-
dant data.

In TAREEG, we opt for using R+-tree index as it has
a similar performance to R-tree, yet, it ensure that parti-
tions are not overlapping, which is a property we need when
dealing with MapReduce environment. Meanwhile, R+-tree
gives way much performance better query processing than
that of a gird structure.

10. CONCLUSION
This paper presents TAREEG; a web-service that makes

real spatial data, from anywhere in the world, available at
the fingertips of every researcher or individual. TAREEG
gets all its data by leveraging the richness of OpenStreetMap
dataset; the most comprehensive available spatial data of
the world. Yet, it is still challenging to obtain Open-
StreetMap data due to the size limitations, special data for-
mat, and the noisy nature of spatial data. TAREEG em-
ploys MapReduce-based techniques to make it efficient and
easy to extract OpenStreetMap data in a standard form with
minimal effort through four main components. Data Extrac-

tion. is responsible for extracting spatial data and clean the
noise data. Data Indexing. where each spatial feature is in-
dexed spatially with high efficiency. Query processor. that
receives the user requests for obtaining spatial data, and
converts the request to a range query with the user speci-
fied area and a predicate filter for the spatial feature (e.g.,
road network, lakes). and Finally, visualization a nicely de-
signed web interface that allows users to express their data
requests. Experimental results show that TAREEG is highly
accurate and efficient in terms of the time taken to satisfy
data extraction of user requests.

11. REFERENCES

[1] L. Alarabi, A. Eldawy, R. Alghamdi, and M. F.
Mokbel. TAREEG: A MapReduce-Based Web Service
for Extracting Spatial Data from OpenStreetMap
(System Demonstration). In SIGMOD, pages 897–900,
Snowbird, UT, June 2014.

[2] Apache pig. http://pig.apache.org/.

[3] Z. Chen, Y. Liy, R. C.-W. Wong, J. Xiong, G. Mai,
and C. Long. Efficient algorithms for optimal location
queries in road networks. In SIGMOD, 2014.

[4] Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu.
Monitoring path nearest neighbor in road networks. In
SIGMOD, pages 591–602, 2009.

[5] K. Deng, X. Zhou, and H. T. Shen. Multi-source
skyline query processing in road networks. In ICDE,
pages 796–805, 2007.

[6] A. Eldawy and M. F. Mokbel. A Demonstration of
SpatialHadoop: An Efficient MapReduce Framework
for Spatial Data (System Demo). In VLDB, Riva del
Garda, Italy, Aug. 2013.

[7] A. Eldawy and M. F. Mokbel. Pigeon: A spatial
mapreduce language. In ICDE, pages 1242–1245, 2014.

[8] Geo fabrik. http://download.geofabrik.de/.

[9] A. Guttman. R-Trees: A Dynamic Index Structure for
Spatial Searching. In SIGMOD, pages 47–57, 1984.

[10] M. Haklay. How good is Volunteered Geographical
Information? A Comparative Study of
OpenStreetMap and Ordnance Survey Datasets.
Environment and Planning B: Planning and Design,
37(4):682–703, 2010.

[11] L. Hu, Y. Jing, W.-S. Ku, and C. Shahabi. Enforcing
k nearest neighbor query integrity on road networks.
In SIGSPATIAL GIS, pages 422–425, 2012.

[12] C. S. Jensen, J. Kolárvr, T. B. Pedersen, and
I. Timko. Nearest neighbor queries in road networks.
In SIGSPATIAL GIS, pages 1–8, 2003.

[13] Y. Jing, L. Hu, W.-S. Ku, and C. Shahabi.
Authentication of k nearest neighbor query on road
networks. TKDE, 26(6):1494–1506, 2014.

[14] C.-C. Lee, Y.-H. Wu, and A. L. P. Chen. Continuous
evaluation of fastest path queries on road networks. In
SSTD, pages 20–37, 2007.

[15] G. Li, Y. Li, J. Li, L. Shu, and F. Yang. Continuous
reverse k nearest neighbor monitoring on moving
objects in road networks. Information Systems,
35(8):860–883, 2010.

[16] S. Luo, Y. Luo, S. Zhou, G. Cong, and J. Guan.
DISKs: a system for distributed spatial group keyword
search on road networks. Proceedings of the

International Conference on Very Large Data Bases,

VLDB, 5(12):1966–1969, 2012.

[17] X. Ma, S. Shekhar, and H. Xiong. Multi-type nearest
neighbor queries in road networks with time window
constraints. In SIGSPATIAL GIS, pages 484–487,
2009.

[18] P. Mooney and P. Corcoran. Characteristics of heavily
edited objects in openstreetmap. Future Internet,
2012.

[19] K. Mouratidis, M. L. Yiu, D. Papadias, and
N. Mamoulis. Continuous nearest neighbor monitoring
in road networks. In VLDB, pages 43–54, 2006.

[20] Navteq.
http://here.com/navteq-redirect/?lang=en-GB .

[21] P. Neis and A. Zipf. Analyzing the Contributor
Activity of a Volunteered Geographic Information
Project Ů The Case of OpenStreetMap. ISPRS
International Journal of Geo-Information,
1(2):146–165, 2012.

[22] J. Nievergelt, H. Hinterberger, and K. Sevcik. The
Grid File: An Adaptable, Symmetric Multikey File
Structure. TODS, 9(1):38–71, 1984.

[23] Open geospatial consortium (ogc).
http://www.opengeospatial.org/.

[24] Openstreetmap.
http://www.openstreetmap.org/export.

[25] Osm benchmarks, june 2012.
http://wiki.openstreetmap.org/wiki/Osm2pgsql/benchmarks.

[26] Osm tools, june 2012.
http://wiki.openstreetmap.org/wiki/Osmosis.

[27] PostGIS, 2007. http://postgis.refractions.net/.

[28] M. N. Rice and V. J. Tsotras. Graph indexing of road
networks for shortest path queries with label
restrictions. PVLDB, 4(2):69–80, 2010.

[29] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-Tree: A Dynamic Index for Multi-Dimensional
Objects. In VLDB, pages 507–518, 1987.

[30] S. Shang, B. Yuan, K. Deng, K. Xie, and X. Zhou.
Finding the Most Accessible Locations: Reverse Path
Nearest Neighbor Query in Road Networks. In
SIGSPATIAL GIS, pages 181–190, 2011.

[31] TAREEG. www.tareeg.org.

[32] J. R. Thomsen, M. L. Yiu, and C. S. Jensen. Effective
caching of shortest paths for location-based services.
In SIGMOD, 2012.

[33] Y. Tian, K. C. K. Lee, and W.-C. Lee. Finding skyline
paths in road networks. In SIGSPATIAL GIS, pages
444–447, 2009.

[34] TIGER files.
http://www.census.gov/geo/www/tiger/.

[35] S. Vanhove and V. Fack. An effective heuristic for
computing many shortest path alternatives in road
networks. International Journal of Geographical

Information Science, 26(6):1031–1050, 2012.

[36] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and
S. Zhou. Shortest path and distance queries on road
networks: An experimental evaluation. PVLDB,
5(5):406–417, 2012.

[37] M. L. Yiu, N. Mamoulis, and D. Papadias. Aggregate
nearest neighbor queries in road networks. TKDE,
17(6):820–833, 2005.

[38] W. Zeng and R. Church. Finding shortest paths on
real road networks: The case for a*. International
Journal of Geographical Information Science,
23(4):531–543, 2009.

[39] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and
S. Zhou. Shortest path and distance queries on road
networks: Towards bridging theory and practice. In
SIGMOD, pages 857–868, 2013.

[40] L. Zhu, Y. Jing, W. Sun, D. Mao, and P. Liu.
Voronoi-based aggregate nearest neighbor query
processing in road networks. In SIGSPATIAL GIS,
pages 518–521, 2010.

http://pig.apache.org/
http://download.geofabrik.de/
http://here.com/navteq-redirect/?lang=en-GB
http://www.opengeospatial.org/
http://www.openstreetmap.org/export
http://wiki.openstreetmap.org/wiki/Osm2pgsql/benchmarks
http://wiki.openstreetmap.org/wiki/Osmosis
www.tareeg.org
http://www.census.gov/geo/www/tiger/

	Introduction
	Overview Of OpenStreetMap
	System Overview
	Data Extraction
	Line-based Data Extractor
	Splitter
	Record Reader
	Mapper

	Polygon-based Data Extractor

	Indexing
	Query Processing
	System Front-End
	Spatial Data Extraction Request
	Spatial Data Download & Visualization

	System Evaluation
	Accuracy
	Performance
	Data Extraction
	Index Building

	conclusion
	References

