
Summit: A Scalable System for Massive Trajectory Data
Management

Louai Alarabi
PhD Student, University of Minnesota, Minneapolis, MN, USA

Email: louai@cs.umn.edu, ACM Member Number: 5798098, SRC: Graduate, Advisor: Mohamed F. Mokbel

ABSTRACT

MapReduce frameworks, e.g., Hadoop, have been used extensively

in di�erent applications that include machine learning, and spatial

processing. In meantime, huge volumes of spatio-temporal trajec-

tory data are coming from di�erent sources over sometime, raised

the demand to exploit the e�ciency of Hadoop, coupled with the

�exibility of the MapReduce framework, in trajectory data process-

ing. This work describes Summit; a full-�edged MapReduce frame-

work with native support for trajectory data.

CCS CONCEPTS

• Information systems → Spatial-temporal systems; Dis-

tributed storage;

ACM Reference Format:

Louai Alarabi. 2018. Summit: A Scalable System for Massive Trajectory

Data Management. In 26th ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems (SIGSPATIAL ’18), November

6–9, 2018, Seattle, WA, USA. ACM, New York, NY, USA, Article 4, 2 pages.

https://doi.org/10.1145/3274895.3282795

1 INTRODUCTION

The importance of processing trajectory data is growing with the

emerging and popularity of applications that produce them in

large-scale [3]. For example, NASA generates over 4-TB of stars

and asteroids moving in the space on a daily basis. Sloan Digi-

tal Sky project collects over 156 TB from millions of outer-space

objects. MoveBank project archives more than 20 years of habi-

tat trajectory data. New York City Taxi and Limousine Commis-

sion record over 1.1 Billion trajectories. National Hurricane Center

stores comprehensive details of all storms’ movement every year.

Brain study in neuroscience model neuron �ber as a trajectory that

creates petabytes of data. The explosive increase in data volumes

raises the demand formanaging and analyzing thesemass archives

of trajectories on big distributed platforms.

Scaling trajectory data received more attention, especially in

utilizing big distributed platforms. The latest e�orts for process-

ing trajectory data are built on the top of big distributed frame-

works, such as on-top of Hadoop [4], or Heterogeneous multiple

platforms [2]. Using general purpose framework as-is will result

in sub-performance for trajectory applications that require index-

ing, mainly because they store data as non-indexed heap �les. For

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this workmust be honored.
For all other uses, contact the owner/author(s).

SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5889-7/18/11.
https://doi.org/10.1145/3274895.3282795

Indexing

MapReduce

Operations

MasterSlaves

Map/Reduce

Tasks

Configured MapReduce Job

Index Information

Storage/Processing

Nodes

Language

File Data

SpatioTemporalFileSplitter

SpatioTemporalRecordReader

Spatial-based

Segmentational-based

Hierarchy spatio-temporal index

Range Query Join Query

KNN Query

 KNN Similarity Query

 TIME

INTERVAL

TRAJECTORY

Preprocessing

Trajectory Representation

GPS

Trajectory data

Storms Stars Animals
RepresentationMapper

RepresentationReducer

Figure 1: ST-Hadoop system architecture

example, a most recent research study investigated the kNN join

query on Hadoop employed �ve isolated map-reduce jobs to exe-

cute a single kNN join operation without indexing trajectory [4].

In our proposed Summit we achieve orders of magnitude better

performance when spatio-temporally indexing trajectories.

Exploit the e�ciency of Hadoop, coupled with the �exibility of

the MapReduce framework for processing trajectory raised many

challenges. Some of the most signi�cant challenges of processing

trajectory data is the inability of Hadoop to preserve the spatio-

temporal locality, load balancing e�ciency, and the capability to

support various trajectory operations. We propose Summit system

that overcome all these challenges by spatio-temporally loads and

partitions trajectory data. We equipped Summit with fundamental

operations such as Range, kNN, Similarity, and Join queries. Sum-

mit is an extension of Hadoop framework that built-in the spatio-

temporal locality of trajectory in the base code of three layers in-

side ST-Hadoop [1], namely preprocessing, indexing, and opera-

tion layers. The key point behind the performance gain of Summit

is the idea of indexing, where data are spatiotemporally loaded and

divided as trajectory segments across computation nodes.

2 FRAMEWORK OVERVIEW

Figure 1 gives the high level architecture of our Summit; with a

built-in support for trajectory data type and operations. Summit

cluster contains one master node that breaks up a map-reduce job

into smaller tasks, carried out by slave nodes. Summit adopts a

layered design of ST-Hadoop brie�y described below:

Language Layer: This layer provides a simple high-level SQL-

like language that supports trajectory data types (i.e., Trajectory,

which described as a consecutive sequence of spatio-temporal

points ST-POINT. Operations contains (e.g., overlap and KNN).

Preprocessing Layer: This layer is responsible for reconstructing

the raw representation of objects into trajectory segments, where

each contains a continuous sequence of spatio-temporal points.

https://doi.org/10.1145/3274895.3282795
https://doi.org/10.1145/3274895.3282795

Indexing Layer: Summit employs a two levels index structure

of global and local indexing. The global index partitions the data

across the computation nodes, while the local index organizes the

data inside each node. Space and time of trajectories are taken into

consideration in each level.

MapReduce Layer: The primary task of this layer is to exploit the

global and the local indexes, respectively, for data pruning. Summit

utilized ST-Hadoop implementations to the MapReduce layer, and

thus, it is not going to be discussed any further in this paper.

Operations Layer: This layer encapsulates the implementation

of three common trajectory operations, namely, range query, kNN,

and join queries. More operations can be added to this layer.

3 TRAJECTORY INDEXING

Summit organizes input �les in the Hadoop Distributed File Sys-

tem (HDFS) in a way that preserves the spatio-temporal geometri-

cal shape of trajectory. Hence, incoming trajectory operations can

have minimal data access to retrieve the query answer, reduce the

computation complexity, and allow applications to run more so-

phisticated operations on the entire trajectory or sub-trajectories;

thus, more in-depth information gained. Summit indexes trajec-

tory through the following four consecutive phases:

1. Preprocessing: Summit triggers this process to converts the

trajectory into a segment representation. Each segment consists of

a consecutive sequence of points in geographical space and time.

This phase is necessary to assemble trajectories information in a

singleton representation.

2. Sampling: The objective of sampling is to approximate the tra-

jectory distribution and ensure the quality of partitioning. Due to

the mass volume of data, Summit scans a representative sample

that �t-in the main memory of the master node.

3. Bulkloading Partitioning: Summit manipulates the sample to

constructs two-level indexing of temporal and spatial, respectively.

Summit applies the temporal partitioning already equipped in ST-

Hadoop to partitions the temporal dimension of trajectories into

either equi-width or equi-depth [1]. As for the spatial level of in-

dexing, Summit employs space or data partitioning algorithms for

every temporal interval, namely Spatial-based or Segmentational-

based. Figures 2 illustrates the logical design of both techniques.

Rectangles represent the boundaries of the HDFS partitions. Dots

and lines depict the trajectory information. Tables below list the

contents of each partition. Described as follow:

• Spatial-based: This partitioning preserves the spatio-temporal

locality closeness between sub-trajectories. The boundaries of the

HDFS partition cut trajectory connectivity as shown in �gure 2a.

This organization of trajectory assists basic operations, such as

range and join queries.

• Segmentational-based: This guarantee that the full informa-

tion of nearby trajectories is organized in a single HDFS block, as

shown in �gure 2b. This technique preserves the spatio-temporal

locality and shapes of trajectories. Such partitioning is more in

favor for operations that not only need to process the spatio-

temporal locality of trajectories but also their semantic or shapes

over time, such as Similarity kNN query.

4. Physical Assigning: The objective of this phase is to scan

through the whole data and assign each record according to the

layout constructed from the previous phase.

Partition

P1

P2

P3

Trajectory data

T7

T6

T5

T4

T3

T2

T1

T1 T7

T5 T6

T2 T3 T4

,

, ,

,P4

P5

T3 T4
,

T7
,

T5 T6
,

(a) Spatial-based

Partition

P1

P2

P3

Trajectory data

T4

T3

T2

T1 T7

T5 T6

T2 T3 T4

,

, ,

,

P2

(b) Segmentational-based

Figure 2: Trajectory Partitioning

4 CONTRIBUTION AND RESULT

The partitioning in Summit is the key feature of its superior perfor-

mance over Hadoop. Preliminary experiments conducted on New

York taxi dataset, to show that Summit achieves orders of magni-

tude higher job throughput.We present three case studies of trajec-

tory operations that utilize Summit indexing, namely, range, kNN

point-based, and kNN similarity-based queries.

• Range query: Given a spatio-temporal query predicates, the

query retrieves all trajectories that belong to the query region in

both space and time. For example, "�nd taxi in downtown Seattle

during time interval between January and March 2018.

• kNN point-based: Given a query point and time interval, the

goal is to �nd the k nearest trajectories to a point during some time

interval. For example, "Find the closest four animals to a Minnehaha

waterfall between August and September".

• kNN Similarity-based: Given a query trajectory, the objective

is to �nd the kNN to the whole trajectory points for every time

instance according to some aggregate or similarity function, such

as MinMax. For example, "Find the similar kNN Taxi to a given tra-

jectory Tr j".

 0

 10

 20

 30

 40

 50

125M 250M 500M 1.1B

T
h

ro
u

g
h

p
u

t
(J

o
b

/m
in

)

Number of Trajectory

RQ

KNN-point

KNN-Similarity

No-index

Figure 3: Preliminary Results

In �gure 3, we increase
the number of moving ob-
jects from 125 Million to
1.1 Billion, while measur-
ing the job throughput per
minute. We average the
execution time of 20 ran-
domly submitted queries
for each operation. Summit
index has more than two orders of magnitude higher throughput
than on-top of Hadoop implementations, consistently, due to the
early pruning employed by its index. We run the range and kNN
point-based queries on the spatial-based trajectory partitioning.
Meanwhile, we utilize the segmentational-based for kNN similar-
ity query.

REFERENCES
[1] Louai Alarabi, Mohamed F. Mokbel, and Mashaal Musleh. 2018. ST-Hadoop:

a MapReduce Framework for Spatio-temporal Data. GeoInformatica (2018).
https://doi.org/10.1007/s10707-018-0325-6

[2] Jie Bao, Ruiyuan Li, Xiuwen Yi, and Yu Zheng. 2016. Managing massive trajecto-
ries on the cloud. In SIGSPATIAL.

[3] Xin Ding, Lu Chen, Yunjun Gao, Christian S. Jensen, and Hujun Bao. 2018. Ul-
TraMan: A Uni�ed Platform for Big Trajectory Data Management and Analytics.
PVLDB (2018).

[4] Yixiang Fang, Reynold Cheng, Wenbin Tang, Silviu Maniu, and Xuan S. Yang.
2016. Scalable Algorithms for Nearest-Neighbor Joins on Big Trajectory Data.
TKDE (2016).

https://doi.org/10.1007/s10707-018-0325-6

	Abstract
	1 Introduction
	2 Framework Overview
	3 Trajectory Indexing
	4 Contribution and Result
	References

